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Preface to the Second Edition

The twenty years since the publication of the first edition of this book have seen tremendous
progress in artificial intelligence, propelled in large part by advances in machine learning,
including advances in reinforcement learning. Although the impressive computational
power that became available is responsible for some of these advances, new developments
in theory and algorithms have been driving forces as well. In the face of this progress, a
second edition of our 1998 book was long overdue, and we finally began the project in
2012. Our goal for the second edition was the same as our goal for the first: to provide a
clear and simple account of the key ideas and algorithms of reinforcement learning that
is accessible to readers in all the related disciplines. The edition remains an introduction,
and we retain a focus on core, online learning algorithms. This edition includes some new
topics that rose to importance over the intervening years, and we expanded coverage of
topics that we now understand better. But we made no attempt to provide comprehensive
coverage of the field, which has exploded in many different directions. We apologize for
having to leave out all but a handful of these contributions.

As in the first edition, we chose not to produce a rigorous formal treatment of
reinforcement learning, or to formulate it in the most general terms. However, our deeper
understanding of some topics since the first edition required a bit more mathematics
to explain; we have set off the more mathematical parts in shaded boxes that the non-
mathematically-inclined may choose to skip. We also use a slightly different notation
than was used in the first edition. In teaching, we have found that the new notation
helps to address some common points of confusion. It emphasizes the difference between
random variables, denoted with capital letters, and their instantiations, denoted in lower
case. For example, the state, action, and reward at time step ¢ are denoted S;, A,
and Ry, while their possible values might be denoted s, a, and r. Along with this, it is
natural to use lower case for value functions (e.g., v, ) and restrict capitals to their tabular
estimates (e.g., Q:(s,a)). Approximate value functions are deterministic functions of
random parameters and are thus also in lower case (e.g., 0(s,w:) = v.(s)). Vectors, such
as the weight vector wy (formerly 6;) and the feature vector x; (formerly ¢;), are bold
and written in lowercase even if they are random variables. Uppercase bold is reserved for
matrices. In the first edition we used special notations, P5,, and R%,,, for the transition
probabilities and expected rewards. One weakness of that notation is that it still did not
fully characterize the dynamics of the rewards, giving only their expectations, which is
sufficient for dynamic programming but not for reinforcement learning. Another weakness

xiii



1Y Preface to the Second Edition

is the excess of subscripts and superscripts. In this edition we use the explicit notation of
p(s’,r|s,a) for the joint probability for the next state and reward given the current state
and action. All the changes in notation are summarized in a table on page xix.

The second edition is significantly expanded, and its top-level organization has been
changed. After the introductory first chapter, the second edition is divided into three new
parts. The first part (Chapters 2-8) treats as much of reinforcement learning as possible
without going beyond the tabular case for which exact solutions can be found. We cover
both learning and planning methods for the tabular case, as well as their unification
in n-step methods and in Dyna. Many algorithms presented in this part are new to
the second edition, including UCB, Expected Sarsa, Double learning, tree-backup, Q(c),
RTDP, and MCTS. Doing the tabular case first, and thoroughly, enables core ideas to be
developed in the simplest possible setting. The second part of the book (Chapters 9-13)
is then devoted to extending the ideas to function approximation. It has new sections on
artificial neural networks, the fourier basis, LSTD, kernel-based methods, Gradient-TD
and Emphatic-TD methods, average-reward methods, true online TD()), and policy-
gradient methods. The second edition significantly expands the treatment of off-policy
learning, first for the tabular case in Chapters 5-7, then with function approximation in
Chapters 11 and 12. Another change is that the second edition separates the forward-view
idea of n-step bootstrapping (now treated more fully in Chapter 7) from the backward-
view idea of eligibility traces (now treated independently in Chapter 12). The third part
of the book has large new chapters on reinforcement learning’s relationships to psychology
(Chapter 14) and neuroscience (Chapter 15), as well as an updated case-studies chapter
including Atari game playing, Watson’s wagering strategy, and the Go playing programs
AlphaGo and AlphaGo Zero (Chapter 16). Still, out of necessity we have included only a
small subset of all that has been done in the field. Our choices reflect our long-standing
interests in inexpensive model-free methods that should scale well to large applications.
The final chapter now includes a discussion of the future societal impacts of reinforcement
learning. For better or worse, the second edition is about twice as large as the first.

This book is designed to be used as the primary text for a one- or two-semester
course on reinforcement learning. For a one-semester course, the first ten chapters should
be covered in order and form a good core, to which can be added material from the
other chapters, from other books such as Bertsekas and Tsitsiklis (1996), Wiering and
van Otterlo (2012), and Szepesvari (2010), or from the literature, according to taste.
Depending of the students’ background, some additional material on online supervised
learning may be helpful. The ideas of options and option models are a natural addition
(Sutton, Precup and Singh, 1999). A two-semester course can cover all the chapters as
well as supplementary material. The book can also be used as part of broader courses
on machine learning, artificial intelligence, or neural networks. In this case, it may be
desirable to cover only a subset of the material. We recommend covering Chapter 1 for a
brief overview, Chapter 2 through Section 2.4, Chapter 3, and then selecting sections
from the remaining chapters according to time and interests. Chapter 6 is the most
important for the subject and for the rest of the book. A course focusing on machine
learning or neural networks should cover Chapters 9 and 10, and a course focusing on
artificial intelligence or planning should cover Chapter 8. Throughout the book, sections
and chapters that are more difficult and not essential to the rest of the book are marked
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with a . These can be omitted on first reading without creating problems later on. Some
exercises are also marked with a * to indicate that they are more advanced and not
essential to understanding the basic material of the chapter.

Most chapters end with a section entitled “Bibliographical and Historical Remarks,”
wherein we credit the sources of the ideas presented in that chapter, provide pointers to
further reading and ongoing research, and describe relevant historical background. Despite
our attempts to make these sections authoritative and complete, we have undoubtedly left
out some important prior work. For that we again apologize, and we welcome corrections
and extensions for incorporation into the electronic version of the book.

Like the first edition, this edition of the book is dedicated to the memory of A. Harry
Klopf. It was Harry who introduced us to each other, and it was his ideas about the brain
and artificial intelligence that launched our long excursion into reinforcement learning.
Trained in neurophysiology and long interested in machine intelligence, Harry was a
senior scientist affiliated with the Avionics Directorate of the Air Force Office of Scientific
Research (AFOSR) at Wright-Patterson Air Force Base, Ohio. He was dissatisfied with
the great importance attributed to equilibrium-seeking processes, including homeostasis
and error-correcting pattern classification methods, in explaining natural intelligence
and in providing a basis for machine intelligence. He noted that systems that try to
maximize something (whatever that might be) are qualitatively different from equilibrium-
seeking systems, and he argued that maximizing systems hold the key to understanding
important aspects of natural intelligence and for building artificial intelligences. Harry was
instrumental in obtaining funding from AFOSR for a project to assess the scientific merit
of these and related ideas. This project was conducted in the late 1970s at the University
of Massachusetts Amherst (UMass Amherst), initially under the direction of Michael
Arbib, William Kilmer, and Nico Spinelli, professors in the Department of Computer
and Information Science at UMass Ambherst, and founding members of the Cybernetics
Center for Systems Neuroscience at the University, a farsighted group focusing on the
intersection of neuroscience and artificial intelligence. Barto, a recent Ph.D. from the
University of Michigan, was hired as post doctoral researcher on the project. Meanwhile,
Sutton, an undergraduate studying computer science and psychology at Stanford, had
been corresponding with Harry regarding their mutual interest in the role of stimulus
timing in classical conditioning. Harry suggested to the UMass group that Sutton would
be a great addition to the project. Thus, Sutton became a UMass graduate student,
whose Ph.D. was directed by Barto, who had become an Associate Professor. The study
of reinforcement learning as presented in this book is rightfully an outcome of that
project instigated by Harry and inspired by his ideas. Further, Harry was responsible
for bringing us, the authors, together in what has been a long and enjoyable interaction.
By dedicating this book to Harry we honor his essential contributions, not only to the
field of reinforcement learning, but also to our collaboration. We also thank Professors
Arbib, Kilmer, and Spinelli for the opportunity they provided to us to begin exploring
these ideas. Finally, we thank AFOSR for generous support over the early years of our
research, and the NSF for its generous support over many of the following years.

We have very many people to thank for their inspiration and help with this second
edition. Everyone we acknowledged for their inspiration and help with the first edition
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deserve our deepest gratitude for this edition as well, which would not exist were it not
for their contributions to edition number one. To that long list we must add many others
who contributed specifically to the second edition. Our students over the many years that
we have taught this material contributed in countless ways: exposing errors, offering fixes,
and—not the least—being confused in places where we could have explained things better.
We especially thank Martha Steenstrup for reading and providing detailed comments
throughout. The chapters on psychology and neuroscience could not have been written
without the help of many experts in those fields. We thank John Moore for his patient
tutoring over many many years on animal learning experiments, theory, and neuroscience,
and for his careful reading of multiple drafts of Chapters 14 and 15. We also thank Matt
Botvinick, Nathaniel Daw, Peter Dayan, and Yael Niv for their penetrating comments on
drafts of these chapter, their essential guidance through the massive literature, and their
interception of many of our errors in early drafts. Of course, the remaining errors in these
chapters—and there must still be some—are totally our own. We thank Phil Thomas for
helping us make these chapters accessible to non-psychologists and non-neuroscientists,
and we thank Peter Sterling for helping us improve the exposition. We are grateful to Jim
Houk for introducing us to the subject of information processing in the basal ganglia and
for alerting us to other relevant aspects of neuroscience. José Martinez, Terry Sejnowski,
David Silver, Gerry Tesauro, Georgios Theocharous, and Phil Thomas generously helped
us understand details of their reinforcement learning applications for inclusion in the
case-studies chapter, and they provided helpful comments on drafts of these sections.
Special thanks are owed to David Silver for helping us better understand Monte Carlo
Tree Search and the DeepMind Go-playing programs. We thank George Konidaris for his
help with the section on the Fourier basis. Emilio Cartoni, Thomas Cederborg, Stefan
Dernbach, Clemens Rosenbaum, Patrick Taylor, Thomas Colin, and Pierre-Luc Bacon
helped us in a number important ways for which we are most grateful.

Sutton would also like to thank the members of the Reinforcement Learning and
Artificial Intelligence laboratory at the University of Alberta for contributions to the
second edition. He owes a particular debt to Rupam Mahmood for essential contributions
to the treatment of off-policy Monte Carlo methods in Chapter 5, to Hamid Maei for
helping develop the perspective on off-policy learning presented in Chapter 11, to Eric
Graves for conducting the experiments in Chapter 13, to Shangtong Zhang for replicating
and thus verifying almost all the experimental results, to Kris De Asis for improving
the new technical content of Chapters 7 and 12, and to Harm van Seijen for insights
that led to the separation of n-step methods from eligibility traces and (along with Hado
van Hasselt) for the ideas involving exact equivalence of forward and backward views of
eligibility traces presented in Chapter 12. Sutton also gratefully acknowledges the support
and freedom he was granted by the Government of Alberta and the National Science and
Engineering Research Council of Canada throughout the period during which the second
edition was conceived and written. In particular, he would like to thank Randy Goebel
for creating a supportive and far-sighted environment for research in Alberta. He would
also like to thank DeepMind their support in the last six months of writing the book.

Finally, we owe thanks to the many careful readers of drafts of the second edition that
we posted on the internet. They found many errors that we had missed and alerted us to
potential points of confusion.
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We first came to focus on what is now known as reinforcement learning in late 1979. We
were both at the University of Massachusetts, working on one of the earliest projects to
revive the idea that networks of neuronlike adaptive elements might prove to be a promising
approach to artificial adaptive intelligence. The project explored the “heterostatic theory
of adaptive systems” developed by A. Harry Klopf. Harry’s work was a rich source of
ideas, and we were permitted to explore them critically and compare them with the long
history of prior work in adaptive systems. Our task became one of teasing the ideas apart
and understanding their relationships and relative importance. This continues today,
but in 1979 we came to realize that perhaps the simplest of the ideas, which had long
been taken for granted, had received surprisingly little attention from a computational
perspective. This was simply the idea of a learning system that wants something, that
adapts its behavior in order to maximize a special signal from its environment. This
was the idea of a “hedonistic” learning system, or, as we would say now, the idea of
reinforcement learning.

Like others, we had a sense that reinforcement learning had been thoroughly explored
in the early days of cybernetics and artificial intelligence. On closer inspection, though,
we found that it had been explored only slightly. While reinforcement learning had clearly
motivated some of the earliest computational studies of learning, most of these researchers
had gone on to other things, such as pattern classification, supervised learning, and
adaptive control, or they had abandoned the study of learning altogether. As a result, the
special issues involved in learning how to get something from the environment received
relatively little attention. In retrospect, focusing on this idea was the critical step that
set this branch of research in motion. Little progress could be made in the computational
study of reinforcement learning until it was recognized that such a fundamental idea had
not yet been thoroughly explored.

The field has come a long way since then, evolving and maturing in several directions.
Reinforcement learning has gradually become one of the most active research areas in ma-
chine learning, artificial intelligence, and neural network research. The field has developed
strong mathematical foundations and impressive applications. The computational study
of reinforcement learning is now a large field, with hundreds of active researchers around
the world in diverse disciplines such as psychology, control theory, artificial intelligence,
and neuroscience. Particularly important have been the contributions establishing and
developing the relationships to the theory of optimal control and dynamic programming.
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The overall problem of learning from interaction to achieve goals is still far from being
solved, but our understanding of it has improved significantly. We can now place compo-
nent ideas, such as temporal-difference learning, dynamic programming, and function
approximation, within a coherent perspective with respect to the overall problem.

Our goal in writing this book was to provide a clear and simple account of the key
ideas and algorithms of reinforcement learning. We wanted our treatment to be accessible
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in detail. For the most part, our treatment takes the point of view of artificial intelligence
and engineering. Coverage of connections to other fields we leave to others or to another
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Summary of Notation

Capital letters are used for random variables, whereas lower case letters are used for
the values of random variables and for scalar functions. Quantities that are required to
be real-valued vectors are written in bold and in lower case (even if random variables).
Matrices are bold capitals.

= equality relationship that is true by definition

= approximately equal

x proportional to

Pr{X =z}  probability that a random variable X takes on the value z
X~p random variable X selected from distribution p(z) = Pr{X =x}
E[X] expectation of a random variable X, i.e., E[X] =} p(z)x
argmax, f(a) a value of a at which f(a) takes its maximal value

Inz natural logarithm of x

e’ the base of the natural logarithm, e ~ 2.71828, carried to power z; e™* = z

R set of real numbers

f:X—=Y function f from elements of set X to elements of set Y

— assignment

(a,b] the real interval between a and b including b but not including a
€ probability of taking a random action in an e-greedy policy

a, B step-size parameters

¥ discount-rate parameter

A decay-rate parameter for eligibility traces

Lpredicate indicator function (Lpregicate = 1 if the predicate is true, else 0)

In a multi-arm bandit problem:

k number of actions (arms)

t discrete time step or play number

gs(a) true value (expected reward) of action a

Q+(a) estimate at time ¢ of g.(a)

Ni(a) number of times action a has been selected up prior to time ¢
H(a) learned preference for selecting action a at time ¢

m(a probability of selecting action a at time ¢

R, estimate at time t of the expected reward given
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Summary of Notation

In a Markov Decision Process:

s, s
a

r

)

g+
A(s)
R

C

S

S|

states

an action

a reward

set of all nonterminal states

set of all states, including the terminal state
set of all actions available in state s

set of all possible rewards, a finite subset of R
subset of; e.g., R C R

is an element of; e.g., s € §, r € R

number of elements in set §

discrete time step

final time step of an episode, or of the episode including time step ¢
action at time ¢

state at time ¢, typically due, stochastically, to S;_; and A;_1
reward at time ¢, typically due, stochastically, to S;_; and A;_;
policy (decision-making rule)

action taken in state s under deterministic policy m

probability of taking action a in state s under stochastic policy 7

return following time ¢

horizon, the time step one looks up to in a forward view

n-step return from ¢ 4+ 1 to ¢ + n, or to h (discounted and corrected)
flat return (undiscounted and uncorrected) from ¢t + 1 to h (Section 5.8)
A-return (Section 12.1)

truncated, corrected A-return (Section 12.3)

A-return, corrected by estimated state, or action, values (Section 12.8)

probability of transition to state s’ with reward r, from state s and action a
probability of transition to state s’, from state s taking action a

expected immediate reward from state s after action a

expected immediate reward on transition from s to s’ under action a

value of state s under policy = (expected return)

value of state s under the optimal policy

value of taking action a in state s under policy m

value of taking action a in state s under the optimal policy

array estimates of state-value function v, or v,

array estimates of action-value function g, or g,

expected approximate action value, e.g., Vi(s) =Y, m(a|s)Q:(s, a)
target for estimate at time ¢
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07, 0f
n

temporal-difference (TD) error at ¢ (a random variable) (Section 6.1)
state- and action-specific forms of the TD error (Section 12.9)
in n-step methods, n is the number of steps of bootstrapping

dimensionality—the number of components of w

alternate dimensionality—the number of components of 6
d-vector of weights underlying an approximate value function

ith component of learnable weight vector

approximate value of state s given weight vector w

alternate notation for o(s,w)

approximate value of state—action pair s, a given weight vector w
column vector of partial derivatives of v(s,w) with respect to w
column vector of partial derivatives of §(s,a, w) with respect to w

vector of features visible when in state s

vector of features visible when in state s taking action a
ith component of vector x(s) or x(s,a)

shorthand for x(S;) or x(S¢, At)

inner product of vectors, w ' x = Do Wik e.g., U(s,w) =W
secondary d-vector of weights, used to learn w (Chapter 11)
d-vector of eligibility traces at time ¢ (Chapter 12)

Tx(s)

parameter vector of target policy (Chapter 13)

probability of taking action a in state s given parameter vector 6
policy corresponding to parameter 6

column vector of partial derivatives of w(als, @) with respect to 0
performance measure for the policy mg

column vector of partial derivatives of J(@) with respect to 0
preference for selecting action a in state s based on 0

behavior policy used to select actions while learning about target policy 7
a baseline function b : § — R for policy-gradient methods

branching factor for an MDP or search tree

importance sampling ratio for time ¢ through time h (Section 5.5)
importance sampling ratio for time ¢ alone, p; = py.¢

average reward (reward rate) for policy 7 (Section 10.3)

estimate of r(m) at time ¢

on-policy distribution over states (Section 9.2)

|8]-vector of the pu(s) for all s € 8

p-weighted squared norm of value function v, i.e., ||U||i =3 s u(s)u(s)?
expected number of visits to state s per episode (page 199)

projection operator for value functions (page 268)

Bellman operator for value functions (Section 11.4)



Txit

Summary of Notation

=
w)

rROgmP—<£ o »

2 \sc’ﬂ

€

&
s

d X d matrix A = E[xt (xt — 'yxtH)T]

d-dimensional vector b = E[R;;1X¢]

TD fixed point wrp = A~'b (a d-vector, Section 9.4)
identity matrix

|8] x |8| matrix of state-transition probabilities under =
IS] x |8| diagonal matrix with g on its diagonal

|S8] x d matrix with the x(s) as its rows

Bellman error (expected TD error) for vy at state s (Section 11.4)
Bellman error vector, with components dy ($)
mean square value error VE(w) = |jvy, — vﬂ||i (Section 9.2)

mean square Bellman error BE(w) = ngHi
mean square projected Bellman error PBE(w) = HHSWHi

mean square temporal-difference error TDE(w) = Ey[p;07] (Section 11.5)
mean square return error (Section 11.6)



Chapter 1

Introduction

The idea that we learn by interacting with our environment is probably the first to occur
to us when we think about the nature of learning. When an infant plays, waves its arms,
or looks about, it has no explicit teacher, but it does have a direct sensorimotor connection
to its environment. Exercising this connection produces a wealth of information about
cause and effect, about the consequences of actions, and about what to do in order to
achieve goals. Throughout our lives, such interactions are undoubtedly a major source
of knowledge about our environment and ourselves. Whether we are learning to drive
a car or to hold a conversation, we are acutely aware of how our environment responds
to what we do, and we seek to influence what happens through our behavior. Learning
from interaction is a foundational idea underlying nearly all theories of learning and
intelligence.

In this book we explore a computational approach to learning from interaction. Rather
than directly theorizing about how people or animals learn, we primarily explore idealized
learning situations and evaluate the effectiveness of various learning methods.! That
is, we adopt the perspective of an artificial intelligence researcher or engineer. We
explore designs for machines that are effective in solving learning problems of scientific or
economic interest, evaluating the designs through mathematical analysis or computational
experiments. The approach we explore, called reinforcement learning, is much more
focused on goal-directed learning from interaction than are other approaches to machine
learning.

1.1 Reinforcement Learning

Reinforcement learning is learning what to do—how to map situations to actions—so
as to maximize a numerical reward signal. The learner is not told which actions to
take, but instead must discover which actions yield the most reward by trying them. In
the most interesting and challenging cases, actions may affect not only the immediate

1The relationships to psychology and neuroscience are summarized in Chapters 14 and 15.
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2 Chapter 1: Introduction

reward but also the next situation and, through that, all subsequent rewards. These two
characteristics—trial-and-error search and delayed reward—are the two most important
distinguishing features of reinforcement learning.

Reinforcement learning, like many topics whose names end with “ing,” such as machine
learning and mountaineering, is simultaneously a problem, a class of solution methods
that work well on the problem, and the field that studies this problem and its solution
methods. It is convenient to use a single name for all three things, but at the same time
essential to keep the three conceptually separate. In particular, the distinction between
problems and solution methods is very important in reinforcement learning; failing to
make this distinction is the source of many confusions.

We formalize the problem of reinforcement learning using ideas from dynamical sys-
tems theory, specifically, as the optimal control of incompletely-known Markov decision
processes. The details of this formalization must wait until Chapter 3, but the basic idea
is simply to capture the most important aspects of the real problem facing a learning
agent interacting over time with its environment to achieve a goal. A learning agent
must be able to sense the state of its environment to some extent and must be able to
take actions that affect the state. The agent also must have a goal or goals relating to
the state of the environment. Markov decision processes are intended to include just
these three aspects—sensation, action, and goal—in their simplest possible forms without
trivializing any of them. Any method that is well suited to solving such problems we
consider to be a reinforcement learning method.

Reinforcement learning is different from supervised learning, the kind of learning studied
in most current research in the field of machine learning. Supervised learning is learning
from a training set of labeled examples provided by a knowledgable external supervisor.
Each example is a description of a situation together with a specification—the label—of
the correct action the system should take to that situation, which is often to identify a
category to which the situation belongs. The object of this kind of learning is for the
system to extrapolate, or generalize, its responses so that it acts correctly in situations
not present in the training set. This is an important kind of learning, but alone it is not
adequate for learning from interaction. In interactive problems it is often impractical to
obtain examples of desired behavior that are both correct and representative of all the
situations in which the agent has to act. In uncharted territory—where one would expect
learning to be most beneficial—an agent must be able to learn from its own experience.

Reinforcement learning is also different from what machine learning researchers call
unsupervised learning, which is typically about finding structure hidden in collections of
unlabeled data. The terms supervised learning and unsupervised learning would seem
to exhaustively classify machine learning paradigms, but they do not. Although one
might be tempted to think of reinforcement learning as a kind of unsupervised learning
because it does not rely on examples of correct behavior, reinforcement learning is trying
to maximize a reward signal instead of trying to find hidden structure. Uncovering
structure in an agent’s experience can certainly be useful in reinforcement learning, but by
itself does not address the reinforcement learning problem of maximizing a reward signal.
We therefore consider reinforcement learning to be a third machine learning paradigm,
alongside supervised learning and unsupervised learning and perhaps other paradigms.
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One of the challenges that arise in reinforcement learning, and not in other kinds
of learning, is the trade-off between exploration and exploitation. To obtain a lot of
reward, a reinforcement learning agent must prefer actions that it has tried in the past
and found to be effective in producing reward. But to discover such actions, it has to
try actions that it has not selected before. The agent has to exploit what it has already
experienced in order to obtain reward, but it also has to explore in order to make better
action selections in the future. The dilemma is that neither exploration nor exploitation
can be pursued exclusively without failing at the task. The agent must try a variety of
actions and progressively favor those that appear to be best. On a stochastic task, each
action must be tried many times to gain a reliable estimate of its expected reward. The
exploration—exploitation dilemma has been intensively studied by mathematicians for
many decades, yet remains unresolved. For now, we simply note that the entire issue of
balancing exploration and exploitation does not even arise in supervised and unsupervised
learning, at least in the purest forms of these paradigms.

Another key feature of reinforcement learning is that it explicitly considers the whole
problem of a goal-directed agent interacting with an uncertain environment. This is in
contrast to many approaches that consider subproblems without addressing how they
might fit into a larger picture. For example, we have mentioned that much of machine
learning research is concerned with supervised learning without explicitly specifying how
such an ability would finally be useful. Other researchers have developed theories of
planning with general goals, but without considering planning’s role in real-time decision
making, or the question of where the predictive models necessary for planning would
come from. Although these approaches have yielded many useful results, their focus on
isolated subproblems is a significant limitation.

Reinforcement learning takes the opposite tack, starting with a complete, interactive,
goal-seeking agent. All reinforcement learning agents have explicit goals, can sense
aspects of their environments, and can choose actions to influence their environments.
Moreover, it is usually assumed from the beginning that the agent has to operate despite
significant uncertainty about the environment it faces. When reinforcement learning
involves planning, it has to address the interplay between planning and real-time action
selection, as well as the question of how environment models are acquired and improved.
When reinforcement learning involves supervised learning, it does so for specific reasons
that determine which capabilities are critical and which are not. For learning research to
make progress, important subproblems have to be isolated and studied, but they should
be subproblems that play clear roles in complete, interactive, goal-seeking agents, even if
all the details of the complete agent cannot yet be filled in.

By a complete, interactive, goal-seeking agent we do not always mean something like
a complete organism or robot. These are clearly examples, but a complete, interactive,
goal-seeking agent can also be a component of a larger behaving system. In this case,
the agent directly interacts with the rest of the larger system and indirectly interacts
with the larger system’s environment. A simple example is an agent that monitors the
charge level of robot’s battery and sends commands to the robot’s control architecture.
This agent’s environment is the rest of the robot together with the robot’s environment.
One must look beyond the most obvious examples of agents and their environments to
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appreciate the generality of the reinforcement learning framework.

One of the most exciting aspects of modern reinforcement learning is its substantive
and fruitful interactions with other engineering and scientific disciplines. Reinforcement
learning is part of a decades-long trend within artificial intelligence and machine learning
toward greater integration with statistics, optimization, and other mathematical subjects.
For example, the ability of some reinforcement learning methods to learn with parameter-
ized approximators addresses the classical “curse of dimensionality” in operations research
and control theory. More distinctively, reinforcement learning has also interacted strongly
with psychology and neuroscience, with substantial benefits going both ways. Of all the
forms of machine learning, reinforcement learning is the closest to the kind of learning
that humans and other animals do, and many of the core algorithms of reinforcement
learning were originally inspired by biological learning systems. Reinforcement learning
has also given back, both through a psychological model of animal learning that better
matches some of the empirical data, and through an influential model of parts of the
brain’s reward system. The body of this book develops the ideas of reinforcement learning
that pertain to engineering and artificial intelligence, with connections to psychology and
neuroscience summarized in Chapters 14 and 15.

Finally, reinforcement learning is also part of a larger trend in artificial intelligence
back toward simple general principles. Since the late 1960’s, many artificial intelligence
researchers presumed that there are no general principles to be discovered, that intelligence
is instead due to the possession of a vast number of special purpose tricks, procedures,
and heuristics. It was sometimes said that if we could just get enough relevant facts into a
machine, say one million, or one billion, then it would become intelligent. Methods based
on general principles, such as search or learning, were characterized as “weak methods,”
whereas those based on specific knowledge were called “strong methods.” This view is
still common today, but not dominant. From our point of view, it was simply premature:
too little effort had been put into the search for general principles to conclude that there
were none. Modern artificial intelligence now includes much research looking for general
principles of learning, search, and decision making. It is not clear how far back the
pendulum will swing, but reinforcement learning research is certainly part of the swing
back toward simpler and fewer general principles of artificial intelligence.

1.2 Examples

A good way to understand reinforcement learning is to consider some of the examples
and possible applications that have guided its development.

e A master chess player makes a move. The choice is informed both by planning—
anticipating possible replies and counterreplies—and by immediate, intuitive judg-
ments of the desirability of particular positions and moves.

e An adaptive controller adjusts parameters of a petroleum refinery’s operation in
real time. The controller optimizes the yield/cost/quality trade-off on the basis
of specified marginal costs without sticking strictly to the set points originally
suggested by engineers.
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o A gazelle calf struggles to its feet minutes after being born. Half an hour later it is
running at 20 miles per hour.

e A mobile robot decides whether it should enter a new room in search of more trash
to collect or start trying to find its way back to its battery recharging station. It
makes its decision based on the current charge level of its battery and how quickly
and easily it has been able to find the recharger in the past.

e Phil prepares his breakfast. Closely examined, even this apparently mundane
activity reveals a complex web of conditional behavior and interlocking goal-subgoal
relationships: walking to the cupboard, opening it, selecting a cereal box, then
reaching for, grasping, and retrieving the box. Other complex, tuned, interactive
sequences of behavior are required to obtain a bowl, spoon, and milk carton. Each
step involves a series of eye movements to obtain information and to guide reaching
and locomotion. Rapid judgments are continually made about how to carry the
objects or whether it is better to ferry some of them to the dining table before
obtaining others. Each step is guided by goals, such as grasping a spoon or getting
to the refrigerator, and is in service of other goals, such as having the spoon to eat
with once the cereal is prepared and ultimately obtaining nourishment. Whether
he is aware of it or not, Phil is accessing information about the state of his body
that determines his nutritional needs, level of hunger, and food preferences.

These examples share features that are so basic that they are easy to overlook. All
involve interaction between an active decision-making agent and its environment, within
which the agent seeks to achieve a goal despite uncertainty about its environment. The
agent’s actions are permitted to affect the future state of the environment (e.g., the
next chess position, the level of reservoirs of the refinery, the robot’s next location and
the future charge level of its battery), thereby affecting the actions and opportunities
available to the agent at later times. Correct choice requires taking into account indirect,
delayed consequences of actions, and thus may require foresight or planning.

At the same time, in all of these examples the effects of actions cannot be fully predicted;
thus the agent must monitor its environment frequently and react appropriately. For
example, Phil must watch the milk he pours into his cereal bowl to keep it from overflowing.
All these examples involve goals that are explicit in the sense that the agent can judge
progress toward its goal based on what it can sense directly. The chess player knows
whether or not he wins, the refinery controller knows how much petroleum is being
produced, the gazelle calf knows when it falls, the mobile robot knows when its batteries
run down, and Phil knows whether or not he is enjoying his breakfast.

In all of these examples the agent can use its experience to improve its performance
over time. The chess player refines the intuition he uses to evaluate positions, thereby
improving his play; the gazelle calf improves the efficiency with which it can run; Phil
learns to streamline making his breakfast. The knowledge the agent brings to the task at
the start—either from previous experience with related tasks or built into it by design or
evolution—influences what is useful or easy to learn, but interaction with the environment
is essential for adjusting behavior to exploit specific features of the task.
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1.3 Elements of Reinforcement Learning

Beyond the agent and the environment, one can identify four main subelements of a
reinforcement learning system: a policy, a reward signal, a value function, and, optionally,
a model of the environment.

A policy defines the learning agent’s way of behaving at a given time. Roughly speaking,
a policy is a mapping from perceived states of the environment to actions to be taken
when in those states. It corresponds to what in psychology would be called a set of
stimulus-response rules or associations. In some cases the policy may be a simple function
or lookup table, whereas in others it may involve extensive computation such as a search
process. The policy is the core of a reinforcement learning agent in the sense that it alone
is sufficient to determine behavior. In general, policies may be stochastic, specifying
probabilities for each action.

A reward signal defines the goal of a reinforcement learning problem. On each time
step, the environment sends to the reinforcement learning agent a single number called
the reward. The agent’s sole objective is to maximize the total reward it receives over
the long run. The reward signal thus defines what are the good and bad events for the
agent. In a biological system, we might think of rewards as analogous to the experiences
of pleasure or pain. They are the immediate and defining features of the problem faced
by the agent. The reward signal is the primary basis for altering the policy; if an action
selected by the policy is followed by low reward, then the policy may be changed to
select some other action in that situation in the future. In general, reward signals may
be stochastic functions of the state of the environment and the actions taken.

Whereas the reward signal indicates what is good in an immediate sense, a value
function specifies what is good in the long run. Roughly speaking, the value of a state is
the total amount of reward an agent can expect to accumulate over the future, starting
from that state. Whereas rewards determine the immediate, intrinsic desirability of
environmental states, values indicate the long-term desirability of states after taking into
account the states that are likely to follow and the rewards available in those states. For
example, a state might always yield a low immediate reward but still have a high value
because it is regularly followed by other states that yield high rewards. Or the reverse
could be true. To make a human analogy, rewards are somewhat like pleasure (if high)
and pain (if low), whereas values correspond to a more refined and farsighted judgment
of how pleased or displeased we are that our environment is in a particular state.

Rewards are in a sense primary, whereas values, as predictions of rewards, are secondary.
Without rewards there could be no values, and the only purpose of estimating values is to
achieve more reward. Nevertheless, it is values with which we are most concerned when
making and evaluating decisions. Action choices are made based on value judgments. We
seek actions that bring about states of highest value, not highest reward, because these
actions obtain the greatest amount of reward for us over the long run. Unfortunately, it
is much harder to determine values than it is to determine rewards. Rewards are basically
given directly by the environment, but values must be estimated and re-estimated from
the sequences of observations an agent makes over its entire lifetime. In fact, the most
important component of almost all reinforcement learning algorithms we consider is a
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method for efficiently estimating values. The central role of value estimation is arguably
the most important thing that has been learned about reinforcement learning over the
last six decades.

The fourth and final element of some reinforcement learning systems is a model of
the environment. This is something that mimics the behavior of the environment, or
more generally, that allows inferences to be made about how the environment will behave.
For example, given a state and action, the model might predict the resultant next state
and next reward. Models are used for planning, by which we mean any way of deciding
on a course of action by considering possible future situations before they are actually
experienced. Methods for solving reinforcement learning problems that use models and
planning are called model-based methods, as opposed to simpler model-free methods that
are explicitly trial-and-error learners—viewed as almost the opposite of planning. In
Chapter 8 we explore reinforcement learning systems that simultaneously learn by trial
and error, learn a model of the environment, and use the model for planning. Modern
reinforcement learning spans the spectrum from low-level, trial-and-error learning to
high-level, deliberative planning.

1.4 Limitations and Scope

Reinforcement learning relies heavily on the concept of state—as input to the policy and
value function, and as both input to and output from the model. Informally, we can
think of the state as a signal conveying to the agent some sense of “how the environment
is” at a particular time. The formal definition of state as we use it here is given by
the framework of Markov decision processes presented in Chapter 3. More generally,
however, we encourage the reader to follow the informal meaning and think of the state
as whatever information is available to the agent about its environment. In effect, we
assume that the state signal is produced by some preprocessing system that is nominally
part of the agent’s environment. We do not address the issues of constructing, changing,
or learning the state signal in this book (other than briefly in Section 17.3). We take this
approach not because we consider state representation to be unimportant, but in order
to focus fully on the decision-making issues. In other words, our concern in this book is
not with designing the state signal, but with deciding what action to take as a function
of whatever state signal is available.

Most of the reinforcement learning methods we consider in this book are structured
around estimating value functions, but it is not strictly necessary to do this to solve
reinforcement learning problems. For example, solution methods such as genetic algo-
rithms, genetic programming, simulated annealing, and other optimization methods never
estimate value functions. These methods apply multiple static policies each interacting
over an extended period of time with a separate instance of the environment. The policies
that obtain the most reward, and random variations of them, are carried over to the
next generation of policies, and the process repeats. We call these evolutionary methods
because their operation is analogous to the way biological evolution produces organisms
with skilled behavior even if they do not learn during their individual lifetimes. If the
space of policies is sufficiently small, or can be structured so that good policies are
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common or easy to find—or if a lot of time is available for the search—then evolutionary
methods can be effective. In addition, evolutionary methods have advantages on problems
in which the learning agent cannot sense the complete state of its environment.

Our focus is on reinforcement learning methods that learn while interacting with the
environment, which evolutionary methods do not do. Methods able to take advantage
of the details of individual behavioral interactions can be much more efficient than
evolutionary methods in many cases. Evolutionary methods ignore much of the useful
structure of the reinforcement learning problem: they do not use the fact that the policy
they are searching for is a function from states to actions; they do not notice which states
an individual passes through during its lifetime, or which actions it selects. In some cases
this information can be misleading (e.g., when states are misperceived), but more often it
should enable more efficient search. Although evolution and learning share many features
and naturally work together, we do not consider evolutionary methods by themselves to
be especially well suited to reinforcement learning problems and, accordingly, we do not
cover them in this book.

1.5 An Extended Example: Tic-Tac-Toe

To illustrate the general idea of reinforcement learning and contrast it with other ap-
proaches, we next consider a single example in more detail.

Consider the familiar child’s game of tic-tac-toe. Two players
take turns playing on a three-by-three board. One player plays
Xs and the other Os until one player wins by placing three marks X100
in a row, horizontally, vertically, or diagonally, as the X player
has in the game shown to the right. If the board fills up with @) X | X
neither player getting three in a row, then the game is a draw.
Because a skilled player can play so as never to lose, let us assume X
that we are playing against an imperfect player, one whose play
is sometimes incorrect and allows us to win. For the moment, in
fact, let us consider draws and losses to be equally bad for us. How might we construct a
player that will find the imperfections in its opponent’s play and learn to maximize its
chances of winning?

Although this is a simple problem, it cannot readily be solved in a satisfactory way
through classical techniques. For example, the classical “minimax” solution from game
theory is not correct here because it assumes a particular way of playing by the opponent.
For example, a minimax player would never reach a game state from which it could
lose, even if in fact it always won from that state because of incorrect play by the
opponent. Classical optimization methods for sequential decision problems, such as
dynamic programming, can compute an optimal solution for any opponent, but require
as input a complete specification of that opponent, including the probabilities with which
the opponent makes each move in each board state. Let us assume that this information
is not available a priori for this problem, as it is not for the vast majority of problems of
practical interest. On the other hand, such information can be estimated from experience,
in this case by playing many games against the opponent. About the best one can do
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on this problem is first to learn a model of the opponent’s behavior, up to some level of
confidence, and then apply dynamic programming to compute an optimal solution given
the approximate opponent model. In the end, this is not that different from some of the
reinforcement learning methods we examine later in this book.

An evolutionary method applied to this problem would directly search the space
of possible policies for one with a high probability of winning against the opponent.
Here, a policy is a rule that tells the player what move to make for every state of the
game—every possible configuration of Xs and Os on the three-by-three board. For each
policy considered, an estimate of its winning probability would be obtained by playing
some number of games against the opponent. This evaluation would then direct which
policy or policies were considered next. A typical evolutionary method would hill-climb
in policy space, successively generating and evaluating policies in an attempt to obtain
incremental improvements. Or, perhaps, a genetic-style algorithm could be used that
would maintain and evaluate a population of policies. Literally hundreds of different
optimization methods could be applied.

Here is how the tic-tac-toe problem would be approached with a method making use
of a value function. First we would set up a table of numbers, one for each possible state
of the game. Each number will be the latest estimate of the probability of our winning
from that state. We treat this estimate as the state’s value, and the whole table is the
learned value function. State A has higher value than state B, or is considered “better’
than state B, if the current estimate of the probability of our winning from A is higher
than it is from B. Assuming we always play Xs, then for all states with three Xs in a row
the probability of winning is 1, because we have already won. Similarly, for all states
with three Os in a row, or that are filled up, the correct probability is 0, as we cannot
win from them. We set the initial values of all the other states to 0.5, representing a
guess that we have a 50% chance of winning.

)

We then play many games against the opponent. To select our moves we examine the
states that would result from each of our possible moves (one for each blank space on the
board) and look up their current values in the table. Most of the time we move greedily,
selecting the move that leads to the state with greatest value, that is, with the highest
estimated probability of winning. Occasionally, however, we select randomly from among
the other moves instead. These are called exploratory moves because they cause us to
experience states that we might otherwise never see. A sequence of moves made and
considered during a game can be diagrammed as in Figure 1.1.

While we are playing, we change the values of the states in which we find ourselves
during the game. We attempt to make them more accurate estimates of the probabilities
of winning. To do this, we “back up” the value of the state after each greedy move to
the state before the move, as suggested by the arrows in Figure 1.1. More precisely, the
current value of the earlier state is updated to be closer to the value of the later state.
This can be done by moving the earlier state’s value a fraction of the way toward the
value of the later state. If we let S; denote the state before the greedy move, and S;11
the state after the move, then the update to the estimated value of S, denoted V(S¢),
can be written as

V(Sy) ¢ V(S)) +a|V(Si1) — V(St)],
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starting position

opponent's move

our move

opponent's move

our move

opponent's move

our move

Figure 1.1: A sequence of tic-tac-toe moves. The solid black lines represent the moves taken
during a game; the dashed lines represent moves that we (our reinforcement learning player)
considered but did not make. Our second move was an exploratory move, meaning that it was
taken even though another sibling move, the one leading to e*, was ranked higher. Exploratory
moves do not result in any learning, but each of our other moves does, causing updates as
suggested by the red arrows in which estimated values are moved up the tree from later nodes
to earlier nodes as detailed in the text.

where « is a small positive fraction called the step-size parameter, which influences
the rate of learning. This update rule is an example of a temporal-difference learning
method, so called because its changes are based on a difference, V(Sy11) — V(S), between
estimates at two successive times.

The method described above performs quite well on this task. For example, if the
step-size parameter is reduced properly over time, then this method converges, for any
fixed opponent, to the true probabilities of winning from each state given optimal play
by our player. Furthermore, the moves then taken (except on exploratory moves) are in
fact the optimal moves against this (imperfect) opponent. In other words, the method
converges to an optimal policy for playing the game against this opponent. If the step-size
parameter is not reduced all the way to zero over time, then this player also plays well
against opponents that slowly change their way of playing.

This example illustrates the differences between evolutionary methods and methods
that learn value functions. To evaluate a policy an evolutionary method holds the policy
fixed and plays many games against the opponent, or simulates many games using a model
of the opponent. The frequency of wins gives an unbiased estimate of the probability
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of winning with that policy, and can be used to direct the next policy selection. But
each policy change is made only after many games, and only the final outcome of each
game is used: what happens during the games is ignored. For example, if the player wins,
then all of its behavior in the game is given credit, independently of how specific moves
might have been critical to the win. Credit is even given to moves that never occurred!
Value function methods, in contrast, allow individual states to be evaluated. In the end,
evolutionary and value function methods both search the space of policies, but learning a
value function takes advantage of information available during the course of play.

This simple example illustrates some of the key features of reinforcement learning
methods. First, there is the emphasis on learning while interacting with an environment,
in this case with an opponent player. Second, there is a clear goal, and correct behavior
requires planning or foresight that takes into account delayed effects of one’s choices. For
example, the simple reinforcement learning player would learn to set up multi-move traps
for a shortsighted opponent. It is a striking feature of the reinforcement learning solution
that it can achieve the effects of planning and lookahead without using a model of the
opponent and without conducting an explicit search over possible sequences of future
states and actions.

While this example illustrates some of the key features of reinforcement learning, it is
so simple that it might give the impression that reinforcement learning is more limited
than it really is. Although tic-tac-toe is a two-person game, reinforcement learning
also applies in the case in which there is no external adversary, that is, in the case of
a “game against nature.” Reinforcement learning also is not restricted to problems in
which behavior breaks down into separate episodes, like the separate games of tic-tac-toe,
with reward only at the end of each episode. It is just as applicable when behavior
continues indefinitely and when rewards of various magnitudes can be received at any
time. Reinforcement learning is also applicable to problems that do not even break down
into discrete time steps like the plays of tic-tac-toe. The general principles apply to
continuous-time problems as well, although the theory gets more complicated and we
omit it from this introductory treatment.

Tic-tac-toe has a relatively small, finite state set, whereas reinforcement learning can
be used when the state set is very large, or even infinite. For example, Gerry Tesauro
(1992, 1995) combined the algorithm described above with an artificial neural network
to learn to play backgammon, which has approximately 10%° states. With this many
states it is impossible ever to experience more than a small fraction of them. Tesauro’s
program learned to play far better than any previous program and eventually better than
the world’s best human players (Section 16.1). The artificial neural network provides the
program with the ability to generalize from its experience, so that in new states it selects
moves based on information saved from similar states faced in the past, as determined
by its network. How well a reinforcement learning system can work in problems with
such large state sets is intimately tied to how appropriately it can generalize from past
experience. It is in this role that we have the greatest need for supervised learning methods
with reinforcement learning. Artificial neural networks and deep learning (Section 9.6)
are not the only, or necessarily the best, way to do this.

In this tic-tac-toe example, learning started with no prior knowledge beyond the
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rules of the game, but reinforcement learning by no means entails a tabula rasa view of
learning and intelligence. On the contrary, prior information can be incorporated into
reinforcement learning in a variety of ways that can be critical for efficient learning (e.g.,
see Sections 9.5, 17.4, and 13.1). We also have access to the true state in the tic-tac-toe
example, whereas reinforcement learning can also be applied when part of the state is
hidden, or when different states appear to the learner to be the same.

Finally, the tic-tac-toe player was able to look ahead and know the states that would
result from each of its possible moves. To do this, it had to have a model of the game
that allowed it to foresee how its environment would change in response to moves that it
might never make. Many problems are like this, but in others even a short-term model
of the effects of actions is lacking. Reinforcement learning can be applied in either case.
A model is not required, but models can easily be used if they are available or can be
learned (Chapter 8).

On the other hand, there are reinforcement learning methods that do not need any
kind of environment model at all. Model-free systems cannot even think about how
their environments will change in response to a single action. The tic-tac-toe player is
model-free in this sense with respect to its opponent: it has no model of its opponent
of any kind. Because models have to be reasonably accurate to be useful, model-free
methods can have advantages over more complex methods when the real bottleneck in
solving a problem is the difficulty of constructing a sufficiently accurate environment
model. Model-free methods are also important building blocks for model-based methods.
In this book we devote several chapters to model-free methods before we discuss how
they can be used as components of more complex model-based methods.

Reinforcement learning can be used at both high and low levels in a system. Although
the tic-tac-toe player learned only about the basic moves of the game, nothing prevents
reinforcement learning from working at higher levels where each of the “actions” may
itself be the application of a possibly elaborate problem-solving method. In hierarchical
learning systems, reinforcement learning can work simultaneously on several levels.

Ezercise 1.1: Self-Play Suppose, instead of playing against a random opponent, the
reinforcement learning algorithm described above played against itself, with both sides
learning. What do you think would happen in this case? Would it learn a different policy
for selecting moves? O

FEzercise 1.2: Symmetries Many tic-tac-toe positions appear different but are really
the same because of symmetries. How might we amend the learning process described
above to take advantage of this? In what ways would this change improve the learning
process? Now think again. Suppose the opponent did not take advantage of symmetries.
In that case, should we? Is it true, then, that symmetrically equivalent positions should
necessarily have the same value? O

Exercise 1.3: Greedy Play Suppose the reinforcement learning player was greedy, that is,
it always played the move that brought it to the position that it rated the best. Might it
learn to play better, or worse, than a nongreedy player? What problems might occur? [J

FEzercise 1.4: Learning from Ezploration Suppose learning updates occurred after all
moves, including exploratory moves. If the step-size parameter is appropriately reduced



1.7. Early History of Reinforcement Learning 13

over time (but not the tendency to explore), then the state values would converge to
a different set of probabilities. What (conceptually) are the two sets of probabilities
computed when we do, and when we do not, learn from exploratory moves? Assuming
that we do continue to make exploratory moves, which set of probabilities might be better
to learn? Which would result in more wins? |

Ezercise 1.5: Other Improvements Can you think of other ways to improve the reinforce-
ment learning player? Can you think of any better way to solve the tic-tac-toe problem
as posed? O

1.6 Summary

Reinforcement learning is a computational approach to understanding and automating
goal-directed learning and decision making. It is distinguished from other computational
approaches by its emphasis on learning by an agent from direct interaction with its
environment, without requiring exemplary supervision or complete models of the envi-
ronment. In our opinion, reinforcement learning is the first field to seriously address the
computational issues that arise when learning from interaction with an environment in
order to achieve long-term goals.

Reinforcement learning uses the formal framework of Markov decision processes to
define the interaction between a learning agent and its environment in terms of states,
actions, and rewards. This framework is intended to be a simple way of representing
essential features of the artificial intelligence problem. These features include a sense of
cause and effect, a sense of uncertainty and nondeterminism, and the existence of explicit
goals.

The concepts of value and value function are key to most of the reinforcement learning
methods that we consider in this book. We take the position that value functions
are important for efficient search in the space of policies. The use of value functions
distinguishes reinforcement learning methods from evolutionary methods that search
directly in policy space guided by evaluations of entire policies.

1.7 Early History of Reinforcement Learning

The early history of reinforcement learning has two main threads, both long and rich, that
were pursued independently before intertwining in modern reinforcement learning. One
thread concerns learning by trial and error, and originated in the psychology of animal
learning. This thread runs through some of the earliest work in artificial intelligence
and led to the revival of reinforcement learning in the early 1980s. The second thread
concerns the problem of optimal control and its solution using value functions and
dynamic programming. For the most part, this thread did not involve learning. The
two threads were mostly independent, but became interrelated to some extent around a
third, less distinct thread concerning temporal-difference methods such as that used in
the tic-tac-toe example in this chapter. All three threads came together in the late 1980s
to produce the modern field of reinforcement learning as we present it in this book.
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The thread focusing on trial-and-error learning is the one with which we are most
familiar and about which we have the most to say in this brief history. Before doing that,
however, we briefly discuss the optimal control thread.

The term “optimal control” came into use in the late 1950s to describe the problem of
designing a controller to minimize or maximize a measure of a dynamical system’s behavior
over time. One of the approaches to this problem was developed in the mid-1950s by
Richard Bellman and others through extending a nineteenth century theory of Hamilton
and Jacobi. This approach uses the concepts of a dynamical system’s state and of a
value function, or “optimal return function,” to define a functional equation, now often
called the Bellman equation. The class of methods for solving optimal control problems
by solving this equation came to be known as dynamic programming (Bellman, 1957a).
Bellman (1957b) also introduced the discrete stochastic version of the optimal control
problem known as Markov decision processes (MDPs). Ronald Howard (1960) devised
the policy iteration method for MDPs. All of these are essential elements underlying the
theory and algorithms of modern reinforcement learning.

Dynamic programming is widely considered the only feasible way of solving general
stochastic optimal control problems. It suffers from what Bellman called “the curse of
dimensionality,” meaning that its computational requirements grow exponentially with the
number of state variables, but it is still far more efficient and more widely applicable than
any other general method. Dynamic programming has been extensively developed since
the late 1950s, including extensions to partially observable MDPs (surveyed by Lovejoy,
1991), many applications (surveyed by White, 1985, 1988, 1993), approximation methods
(surveyed by Rust, 1996), and asynchronous methods (Bertsekas, 1982, 1983). Many
excellent modern treatments of dynamic programming are available (e.g., Bertsekas, 2005,
2012; Puterman, 1994; Ross, 1983; and Whittle, 1982, 1983). Bryson (1996) provides an
authoritative history of optimal control.

Connections between optimal control and dynamic programming, on the one hand,
and learning, on the other, were slow to be recognized. We cannot be sure about what
accounted for this separation, but its main cause was likely the separation between
the disciplines involved and their different goals. Also contributing may have been the
prevalent view of dynamic programming as an offline computation depending essentially
on accurate system models and analytic solutions to the Bellman equation. Further,
the simplest form of dynamic programming is a computation that proceeds backwards
in time, making it difficult to see how it could be involved in a learning process that
must proceed in a forward direction. Some of the earliest work in dynamic programming,
such as that by Bellman and Dreyfus (1959), might now be classified as following
a learning approach. Witten’s (1977) work (discussed below) certainly qualifies as a
combination of learning and dynamic-programming ideas. Werbos (1987) argued explicitly
for greater interrelation of dynamic programming and learning methods and for dynamic
programming’s relevance to understanding neural and cognitive mechanisms. For us the
full integration of dynamic programming methods with online learning did not occur
until the work of Chris Watkins in 1989, whose treatment of reinforcement learning
using the MDP formalism has been widely adopted. Since then these relationships have
been extensively developed by many researchers, most particularly by Dimitri Bertsekas
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and John Tsitsiklis (1996), who coined the term “neurodynamic programming” to refer
to the combination of dynamic programming and artificial neural networks. Another
term currently in use is “approximate dynamic programming.” These various approaches
emphasize different aspects of the subject, but they all share with reinforcement learning
an interest in circumventing the classical shortcomings of dynamic programming.

We consider all of the work in optimal control also to be, in a sense, work in reinforce-
ment learning. We define a reinforcement learning method as any effective way of solving
reinforcement learning problems, and it is now clear that these problems are closely
related to optimal control problems, particularly stochastic optimal control problems
such as those formulated as MDPs. Accordingly, we must consider the solution methods
of optimal control, such as dynamic programming, also to be reinforcement learning
methods. Because almost all of the conventional methods require complete knowledge
of the system to be controlled, it feels a little unnatural to say that they are part of
reinforcement learning. On the other hand, many dynamic programming algorithms are
incremental and iterative. Like learning methods, they gradually reach the correct answer
through successive approximations. As we show in the rest of this book, these similarities
are far more than superficial. The theories and solution methods for the cases of complete
and incomplete knowledge are so closely related that we feel they must be considered
together as part of the same subject matter.

Let us return now to the other major thread leading to the modern field of reinforcement
learning, the thread centered on the idea of trial-and-error learning. We only touch on
the major points of contact here, taking up this topic in more detail in Section 14.3.
According to American psychologist R. S. Woodworth (1938) the idea of trial-and-error
learning goes as far back as the 1850s to Alexander Bain’s discussion of learning by
“groping and experiment” and more explicitly to the British ethologist and psychologist
Conway Lloyd Morgan’s 1894 use of the term to describe his observations of animal
behavior. Perhaps the first to succinctly express the essence of trial-and-error learning as
a principle of learning was Edward Thorndike:

Of several responses made to the same situation, those which are accompanied
or closely followed by satisfaction to the animal will, other things being
equal, be more firmly connected with the situation, so that, when it recurs,
they will be more likely to recur; those which are accompanied or closely
followed by discomfort to the animal will, other things being equal, have their
connections with that situation weakened, so that, when it recurs, they will
be less likely to occur. The greater the satisfaction or discomfort, the greater
the strengthening or weakening of the bond. (Thorndike, 1911, p. 244)

Thorndike called this the “Law of Effect” because it describes the effect of reinforcing
events on the tendency to select actions. Thorndike later modified the law to better
account for subsequent data on animal learning (such as differences between the effects
of reward and punishment), and the law in its various forms has generated considerable
controversy among learning theorists (e.g., see Gallistel, 2005; Herrnstein, 1970; Kimble,
1961, 1967; Mazur, 1994). Despite this, the Law of Effect—in one form or another—is
widely regarded as a basic principle underlying much behavior (e.g., Hilgard and Bower,
1975; Dennett, 1978; Campbell, 1960; Cziko, 1995). It is the basis of the influential
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learning theories of Clark Hull (1943, 1952) and the influential experimental methods of
B. F. Skinner (1938).

The term “reinforcement” in the context of animal learning came into use well after
Thorndike’s expression of the Law of Effect, first appearing in this context (to the best of
our knowledge) in the 1927 English translation of Pavlov’s monograph on conditioned
reflexes. Pavlov described reinforcement as the strengthening of a pattern of behavior due
to an animal receiving a stimulus—a reinforcer—in an appropriate temporal relationship
with another stimulus or with a response. Some psychologists extended the idea of
reinforcement to include weakening as well as strengthening of behavior, and extended
the idea of a reinforcer to include possibly the omission or termination of stimulus. To
be considered reinforcer, the strengthening or weakening must persist after the reinforcer
is withdrawn; a stimulus that merely attracts an animal’s attention or that energizes its
behavior without producing lasting changes would not be considered a reinforcer.

The idea of implementing trial-and-error learning in a computer appeared among the
earliest thoughts about the possibility of artificial intelligence. In a 1948 report, Alan
Turing described a design for a “pleasure-pain system” that worked along the lines of the
Law of Effect:

When a configuration is reached for which the action is undetermined, a
random choice for the missing data is made and the appropriate entry is made
in the description, tentatively, and is applied. When a pain stimulus occurs
all tentative entries are cancelled, and when a pleasure stimulus occurs they
are all made permanent. (Turing, 1948)

Many ingenious electro-mechanical machines were constructed that demonstrated trial-
and-error learning. The earliest may have been a machine built by Thomas Ross (1933)
that was able to find its way through a simple maze and remember the path through
the settings of switches. In 1951 W. Grey Walter built a version of his “mechanical
tortoise” (Walter, 1950) capable of a simple form of learning. In 1952 Claude Shannon
demonstrated a maze-running mouse named Theseus that used trial and error to find
its way through a maze, with the maze itself remembering the successful directions
via magnets and relays under its floor (see also Shannon, 1951). J. A. Deutsch (1954)
described a maze-solving machine based on his behavior theory (Deutsch, 1953) that
has some properties in common with model-based reinforcement learning (Chapter 8).
In his Ph.D. dissertation, Marvin Minsky (1954) discussed computational models of
reinforcement learning and described his construction of an analog machine composed of
components he called SNARCs (Stochastic Neural-Analog Reinforcement Calculators)
meant to resemble modifiable synaptic connections in the brain (Chapter 15). The
web site cyberneticzoo.com contains a wealth of information on these and many other
electro-mechanical learning machines.

Building electro-mechanical learning machines gave way to programming digital com-
puters to perform various types of learning, some of which implemented trial-and-error
learning. Farley and Clark (1954) described a digital simulation of a neural-network
learning machine that learned by trial and error. But their interests soon shifted from
trial-and-error learning to generalization and pattern recognition, that is, from reinforce-
ment learning to supervised learning (Clark and Farley, 1955). This began a pattern
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of confusion about the relationship between these types of learning. Many researchers
seemed to believe that they were studying reinforcement learning when they were actually
studying supervised learning. For example, artificial neural network pioneers such as
Rosenblatt (1962) and Widrow and Hoff (1960) were clearly motivated by reinforcement
learning—they used the language of rewards and punishments—but the systems they
studied were supervised learning systems suitable for pattern recognition and perceptual
learning. Even today, some researchers and textbooks minimize or blur the distinction
between these types of learning. For example, some artificial neural network textbooks
have used the term “trial-and-error” to describe networks that learn from training exam-
ples. This is an understandable confusion because these networks use error information
to update connection weights, but this misses the essential character of trial-and-error
learning as selecting actions on the basis of evaluative feedback that does not rely on
knowledge of what the correct action should be.

Partly as a result of these confusions, research into genuine trial-and-error learning
became rare in the 1960s and 1970s, although there were notable exceptions. In the 1960s
the terms “reinforcement” and “reinforcement learning” were used in the engineering
literature for the first time to describe engineering uses of trial-and-error learning (e.g.,
Waltz and Fu, 1965; Mendel, 1966; Fu, 1970; Mendel and McClaren, 1970). Particularly
influential was Minsky’s paper “Steps Toward Artificial Intelligence” (Minsky, 1961),
which discussed several issues relevant to trial-and-error learning, including prediction,
expectation, and what he called the basic credit-assignment problem for complex rein-
forcement learning systems: How do you distribute credit for success among the many
decisions that may have been involved in producing it? All of the methods we discuss in
this book are, in a sense, directed toward solving this problem. Minsky’s paper is well
worth reading today.

In the next few paragraphs we discuss some of the other exceptions and partial
exceptions to the relative neglect of computational and theoretical study of genuine
trial-and-error learning in the 1960s and 1970s.

One exception was the work of the New Zealand researcher John Andreae, who
developed a system called STeLLA that learned by trial and error in interaction with
its environment. This system included an internal model of the world and, later, an
“internal monologue” to deal with problems of hidden state (Andreae, 1963, 1969a,b).
Andreae’s later work (1977) placed more emphasis on learning from a teacher, but still
included learning by trial and error, with the generation of novel events being one of
the system’s goals. A feature of this work was a “leakback process,” elaborated more
fully in Andreae (1998), that implemented a credit-assignment mechanism similar to the
backing-up update operations that we describe. Unfortunately, his pioneering research
was not well known and did not greatly impact subsequent reinforcement learning research.
Recent summaries are available (Andreae, 2017a,b).

More influential was the work of Donald Michie. In 1961 and 1963 he described a
simple trial-and-error learning system for learning how to play tic-tac-toe (or naughts
and crosses) called MENACE (for Matchbox Educable Naughts and Crosses Engine). It
consisted of a matchbox for each possible game position, each matchbox containing a
number of colored beads, a different color for each possible move from that position. By
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drawing a bead at random from the matchbox corresponding to the current game position,
one could determine MENACE’s move. When a game was over, beads were added to
or removed from the boxes used during play to reward or punish MENACE’s decisions.
Michie and Chambers (1968) described another tic-tac-toe reinforcement learner called
GLEE (Game Learning Expectimaxing Engine) and a reinforcement learning controller
called BOXES. They applied BOXES to the task of learning to balance a pole hinged to
a movable cart on the basis of a failure signal occurring only when the pole fell or the
cart reached the end of a track. This task was adapted from the earlier work of Widrow
and Smith (1964), who used supervised learning methods, assuming instruction from a
teacher already able to balance the pole. Michie and Chambers’s version of pole-balancing
is one of the best early examples of a reinforcement learning task under conditions of
incomplete knowledge. It influenced much later work in reinforcement learning, beginning
with some of our own studies (Barto, Sutton, and Anderson, 1983; Sutton, 1984). Michie
consistently emphasized the role of trial and error and learning as essential aspects of
artificial intelligence (Michie, 1974).

Widrow, Gupta, and Maitra (1973) modified the Least-Mean-Square (LMS) algorithm
of Widrow and Hoff (1960) to produce a reinforcement learning rule that could learn
from success and failure signals instead of from training examples. They called this form
of learning “selective bootstrap adaptation” and described it as “learning with a critic”
instead of “learning with a teacher.” They analyzed this rule and showed how it could
learn to play blackjack. This was an isolated foray into reinforcement learning by Widrow,
whose contributions to supervised learning were much more influential. Our use of the
term “critic” is derived from Widrow, Gupta, and Maitra’s paper. Buchanan, Mitchell,
Smith, and Johnson (1978) independently used the term critic in the context of machine
learning (see also Dietterich and Buchanan, 1984), but for them a critic is an expert
system able to do more than evaluate performance.

Research on learning automata had a more direct influence on the trial-and-error
thread leading to modern reinforcement learning research. These are methods for solving
a nonassociative, purely selectional learning problem known as the k-armed bandit by
analogy to a slot machine, or “one-armed bandit,” except with k levers (see Chapter 2).
Learning automata are simple, low-memory machines for improving the probability
of reward in these problems. Learning automata originated with work in the 1960s
of the Russian mathematician and physicist M. L. Tsetlin and colleagues (published
posthumously in Tsetlin, 1973) and has been extensively developed since then within
engineering (see Narendra and Thathachar, 1974, 1989). These developments included the
study of stochastic learning automata, which are methods for updating action probabilities
on the basis of reward signals. Although not developed in the tradition of stochastic
learning automata, Harth and Tzanakou’s (1974) Alopex algorithm (for Algorithm of
pattern extraction) is a stochastic method for detecting correlations between actions and
reinforcement that influenced some of our early research (Barto, Sutton, and Brouwer,
1981). Stochastic learning automata were foreshadowed by earlier work in psychology,
beginning with William Estes’ (1950) effort toward a statistical theory of learning and
further developed by others (e.g., Bush and Mosteller, 1955; Sternberg, 1963).

The statistical learning theories developed in psychology were adopted by researchers in
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economics, leading to a thread of research in that field devoted to reinforcement learning.
This work began in 1973 with the application of Bush and Mosteller’s learning theory to
a collection of classical economic models (Cross, 1973). One goal of this research was to
study artificial agents that act more like real people than do traditional idealized economic
agents (Arthur, 1991). This approach expanded to the study of reinforcement learning
in the context of game theory. Reinforcement learning in economics developed largely
independently of the early work in reinforcement learning in artificial intelligence, though
game theory remains a topic of interest in both fields (beyond the scope of this book).
Camerer (2011) discusses the reinforcement learning tradition in economics, and Nowé,
Vrancx, and De Hauwere (2012) provide an overview of the subject from the point of view
of multi-agent extensions to the approach that we introduce in this book. Reinforcement
in the context of game theory is a much different subject than reinforcement learning
used in programs to play tic-tac-toe, checkers, and other recreational games. See, for
example, Szita (2012) for an overview of this aspect of reinforcement learning and games.

John Holland (1975) outlined a general theory of adaptive systems based on selectional
principles. His early work concerned trial and error primarily in its nonassociative
form, as in evolutionary methods and the k-armed bandit. In 1976 and more fully in
1986, he introduced classifier systems, true reinforcement learning systems including
association and value functions. A key component of Holland’s classifier systems was
the “bucket-brigade algorithm” for credit assignment, which is closely related to the
temporal difference algorithm used in our tic-tac-toe example and discussed in Chapter 6.
Another key component was a genetic algorithm, an evolutionary method whose role was
to evolve useful representations. Classifier systems have been extensively developed by
many researchers to form a major branch of reinforcement learning research (reviewed by
Urbanowicz and Moore, 2009), but genetic algorithms—which we do not consider to be
reinforcement learning systems by themselves—have received much more attention, as
have other approaches to evolutionary computation (e.g., Fogel, Owens and Walsh, 1966,
and Koza, 1992).

The individual most responsible for reviving the trial-and-error thread to reinforcement
learning within artificial intelligence was Harry Klopf (1972, 1975, 1982). Klopf recognized
that essential aspects of adaptive behavior were being lost as learning researchers came
to focus almost exclusively on supervised learning. What was missing, according to
Klopf, were the hedonic aspects of behavior, the drive to achieve some result from the
environment, to control the environment toward desired ends and away from undesired
ends (see Section 15.9). This is the essential idea of trial-and-error learning. Klopf’s
ideas were especially influential on the authors because our assessment of them (Barto
and Sutton, 1981a) led to our appreciation of the distinction between supervised and
reinforcement learning, and to our eventual focus on reinforcement learning. Much of
the early work that we and colleagues accomplished was directed toward showing that
reinforcement learning and supervised learning were indeed different (Barto, Sutton, and
Brouwer, 1981; Barto and Sutton, 1981b; Barto and Anandan, 1985). Other studies
showed how reinforcement learning could address important problems in artificial neural
network learning, in particular, how it could produce learning algorithms for multilayer
networks (Barto, Anderson, and Sutton, 1982; Barto and Anderson, 1985; Barto, 1985,
1986; Barto and Jordan, 1987; see Section 15.10).
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We turn now to the third thread to the history of reinforcement learning, that concerning
temporal-difference learning. Temporal-difference learning methods are distinctive in
being driven by the difference between temporally successive estimates of the same
quantity—for example, of the probability of winning in the tic-tac-toe example. This
thread is smaller and less distinct than the other two, but it has played a particularly
important role in the field, in part because temporal-difference methods seem to be new
and unique to reinforcement learning.

The origins of temporal-difference learning are in part in animal learning psychology,
in particular, in the notion of secondary reinforcers. A secondary reinforcer is a stimulus
that has been paired with a primary reinforcer such as food or pain and, as a result, has
come to take on similar reinforcing properties. Minsky (1954) may have been the first to
realize that this psychological principle could be important for artificial learning systems.
Arthur Samuel (1959) was the first to propose and implement a learning method that
included temporal-difference ideas, as part of his celebrated checkers-playing program
(Section 16.2).

Samuel made no reference to Minsky’s work or to possible connections to animal
learning. His inspiration apparently came from Claude Shannon’s (1950) suggestion that
a computer could be programmed to use an evaluation function to play chess, and that it
might be able to improve its play by modifying this function online. (It is possible that
these ideas of Shannon’s also influenced Bellman, but we know of no evidence for this.)
Minsky (1961) extensively discussed Samuel’s work in his “Steps” paper, suggesting the
connection to secondary reinforcement theories, both natural and artificial.

As we have discussed, in the decade following the work of Minsky and Samuel, little
computational work was done on trial-and-error learning, and apparently no computational
work at all was done on temporal-difference learning. In 1972, Klopf brought trial-and-
error learning together with an important component of temporal-difference learning.
Klopf was interested in principles that would scale to learning in large systems, and thus
was intrigued by notions of local reinforcement, whereby subcomponents of an overall
learning system could reinforce one another. He developed the idea of “generalized
reinforcement,” whereby every component (nominally, every neuron) views all of its
inputs in reinforcement terms: excitatory inputs as rewards and inhibitory inputs as
punishments. This is not the same idea as what we now know as temporal-difference
learning, and in retrospect it is farther from it than was Samuel’s work. On the other
hand, Klopf linked the idea with trial-and-error learning and related it to the massive
empirical database of animal learning psychology.

Sutton (1978a,b,c) developed Klopf’s ideas further, particularly the links to animal
learning theories, describing learning rules driven by changes in temporally successive
predictions. He and Barto refined these ideas and developed a psychological model of
classical conditioning based on temporal-difference learning (Sutton and Barto, 1981a;
Barto and Sutton, 1982). There followed several other influential psychological models of
classical conditioning based on temporal-difference learning (e.g., Klopf, 1988; Moore et
al., 1986; Sutton and Barto, 1987, 1990). Some neuroscience models developed at this
time are well interpreted in terms of temporal-difference learning (Hawkins and Kandel,
1984; Byrne, Gingrich, and Baxter, 1990; Gelperin, Hopfield, and Tank, 1985; Tesauro,
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1986; Friston et al., 1994), although in most cases there was no historical connection.

Our early work on temporal-difference learning was strongly influenced by animal
learning theories and by Klopf’s work. Relationships to Minsky’s “Steps” paper and to
Samuel’s checkers players were recognized only afterward. By 1981, however, we were
fully aware of all the prior work mentioned above as part of the temporal-difference and
trial-and-error threads. At this time we developed a method for using temporal-difference
learning combined with trial-and-error learning, known as the actor—critic architecture,
and applied this method to Michie and Chambers’s pole-balancing problem (Barto, Sutton,
and Anderson, 1983). This method was extensively studied in Sutton’s (1984) Ph.D.
dissertation and extended to use backpropagation neural networks in Anderson’s (1986)
Ph.D. dissertation. Around this time, Holland (1986) incorporated temporal-difference
ideas explicitly into his classifier systems in the form of his bucket-brigade algorithm.
A key step was taken by Sutton (1988) by separating temporal-difference learning from
control, treating it as a general prediction method. That paper also introduced the TD(A)
algorithm and proved some of its convergence properties.

As we were finalizing our work on the actor—critic architecture in 1981, we discovered
a paper by Ian Witten (1977, 1976a) which appears to be the earliest publication of a
temporal-difference learning rule. He proposed the method that we now call tabular TD(0)
for use as part of an adaptive controller for solving MDPs. This work was first submitted
for journal publication in 1974 and also appeared in Witten’s 1976 PhD dissertation.
Witten’s work was a descendant of Andreae’s early experiments with STeLLA and other
trial-and-error learning systems. Thus, Witten’s 1977 paper spanned both major threads
of reinforcement learning research—trial-and-error learning and optimal control-—while
making a distinct early contribution to temporal-difference learning.

The temporal-difference and optimal control threads were fully brought together
in 1989 with Chris Watkins’s development of Q-learning. This work extended and
integrated prior work in all three threads of reinforcement learning research. Paul Werbos
(1987) contributed to this integration by arguing for the convergence of trial-and-error
learning and dynamic programming since 1977. By the time of Watkins’s work there had
been tremendous growth in reinforcement learning research, primarily in the machine
learning subfield of artificial intelligence, but also in artificial neural networks and artificial
intelligence more broadly. In 1992, the remarkable success of Gerry Tesauro’s backgammon
playing program, TD-Gammon, brought additional attention to the field.

In the time since publication of the first edition of this book, a flourishing subfield of
neuroscience developed that focuses on the relationship between reinforcement learning
algorithms and reinforcement learning in the nervous system. Most responsible for this is
an uncanny similarity between the behavior of temporal-difference algorithms and the
activity of dopamine producing neurons in the brain, as pointed out by a number of
researchers (Friston et al., 1994; Barto, 1995a; Houk, Adams, and Barto, 1995; Montague,
Dayan, and Sejnowski, 1996; and Schultz, Dayan, and Montague, 1997). Chapter 15
provides an introduction to this exciting aspect of reinforcement learning. Other important
contributions made in the recent history of reinforcement learning are too numerous to
mention in this brief account; we cite many of these at the end of the individual chapters
in which they arise.
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Bibliographical Remarks

For additional general coverage of reinforcement learning, we refer the reader to the
books by Szepesvari (2010), Bertsekas and Tsitsiklis (1996), Kaelbling (1993a), and
Sugiyama, Hachiya, and Morimura (2013). Books that take a control or operations research
perspective include those of Si, Barto, Powell, and Wunsch (2004), Powell (2011), Lewis
and Liu (2012), and Bertsekas (2012). Cao’s (2009) review places reinforcement learning
in the context of other approaches to learning and optimization of stochastic dynamic
systems. Three special issues of the journal Machine Learning focus on reinforcement
learning: Sutton (1992a), Kaelbling (1996), and Singh (2002). Useful surveys are provided
by Barto (1995b); Kaelbling, Littman, and Moore (1996); and Keerthi and Ravindran
(1997). The volume edited by Weiring and van Otterlo (2012) provides an excellent
overview of recent developments.

1.2 The example of Phil’s breakfast in this chapter was inspired by Agre (1988).

1.5 The temporal-difference method used in the tic-tac-toe example is developed in
Chapter 6.



Part I: Tabular Solution Methods

In this part of the book we describe almost all the core ideas of reinforcement learning
algorithms in their simplest forms: that in which the state and action spaces are small
enough for the approximate value functions to be represented as arrays, or tables. In
this case, the methods can often find exact solutions, that is, they can often find exactly
the optimal value function and the optimal policy. This contrasts with the approximate
methods described in the next part of the book, which only find approximate solutions,
but which in return can be applied effectively to much larger problems.

The first chapter of this part of the book describes solution methods for the special
case of the reinforcement learning problem in which there is only a single state, called
bandit problems. The second chapter describes the general problem formulation that we
treat throughout the rest of the book—finite Markov decision processes—and its main
ideas including Bellman equations and value functions.

The next three chapters describe three fundamental classes of methods for solving finite
Markov decision problems: dynamic programming, Monte Carlo methods, and temporal-
difference learning. Each class of methods has its strengths and weaknesses. Dynamic
programming methods are well developed mathematically, but require a complete and
accurate model of the environment. Monte Carlo methods don’t require a model and are
conceptually simple, but are not well suited for step-by-step incremental computation.
Finally, temporal-difference methods require no model and are fully incremental, but are
more complex to analyze. The methods also differ in several ways with respect to their
efficiency and speed of convergence.

The remaining two chapters describe how these three classes of methods can be
combined to obtain the best features of each of them. In one chapter we describe how
the strengths of Monte Carlo methods can be combined with the strengths of temporal-
difference methods via multi-step bootstrapping methods. In the final chapter of this part
of the book we show how temporal-difference learning methods can be combined with
model learning and planning methods (such as dynamic programming) for a complete
and unified solution to the tabular reinforcement learning problem.
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Chapter 2

Multi-armed Bandits

The most important feature distinguishing reinforcement learning from other types of
learning is that it uses training information that evaluates the actions taken rather
than instructs by giving correct actions. This is what creates the need for active
exploration, for an explicit search for good behavior. Purely evaluative feedback indicates
how good the action taken was, but not whether it was the best or the worst action
possible. Purely instructive feedback, on the other hand, indicates the correct action to
take, independently of the action actually taken. This kind of feedback is the basis of
supervised learning, which includes large parts of pattern classification, artificial neural
networks, and system identification. In their pure forms, these two kinds of feedback
are quite distinct: evaluative feedback depends entirely on the action taken, whereas
instructive feedback is independent of the action taken.

In this chapter we study the evaluative aspect of reinforcement learning in a simplified
setting, one that does not involve learning to act in more than one situation. This
nonassociative setting is the one in which most prior work involving evaluative feedback
has been done, and it avoids much of the complexity of the full reinforcement learning
problem. Studying this case enables us to see most clearly how evaluative feedback differs
from, and yet can be combined with, instructive feedback.

The particular nonassociative, evaluative feedback problem that we explore is a simple
version of the k-armed bandit problem. We use this problem to introduce a number
of basic learning methods which we extend in later chapters to apply to the full rein-
forcement learning problem. At the end of this chapter, we take a step closer to the full
reinforcement learning problem by discussing what happens when the bandit problem
becomes associative, that is, when actions are taken in more than one situation.

2.1 A k-armed Bandit Problem

Consider the following learning problem. You are faced repeatedly with a choice among
k different options, or actions. After each choice you receive a numerical reward chosen
from a stationary probability distribution that depends on the action you selected. Your
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objective is to maximize the expected total reward over some time period, for example,
over 1000 action selections, or time steps.

This is the original form of the k-armed bandit problem, so named by analogy to a slot
machine, or “one-armed bandit,” except that it has k levers instead of one. Each action
selection is like a play of one of the slot machine’s levers, and the rewards are the payoffs
for hitting the jackpot. Through repeated action selections you are to maximize your
winnings by concentrating your actions on the best levers. Another analogy is that of
a doctor choosing between experimental treatments for a series of seriously ill patients.
Each action is the selection of a treatment, and each reward is the survival or well-being
of the patient. Today the term “bandit problem” is sometimes used for a generalization
of the problem described above, but in this book we use it to refer just to this simple
case.

In our k-armed bandit problem, each of the k actions has an expected or mean reward
given that that action is selected; let us call this the value of that action. We denote the
action selected on time step ¢t as A;, and the corresponding reward as R;. The value then
of an arbitrary action a, denoted g¢.(a), is the expected reward given that a is selected:

q*(a) = ]E[Rt ‘ At:a] .

If you knew the value of each action, then it would be trivial to solve the k-armed bandit
problem: you would always select the action with highest value. We assume that you do
not know the action values with certainty, although you may have estimates. We denote
the estimated value of action a at time step t as Q¢(a). We would like Q¢(a) to be close
to g.(a).

If you maintain estimates of the action values, then at any time step there is at least
one action whose estimated value is greatest. We call these the greedy actions. When you
select one of these actions, we say that you are exploiting your current knowledge of the
values of the actions. If instead you select one of the nongreedy actions, then we say you
are exploring, because this enables you to improve your estimate of the nongreedy action’s
value. Exploitation is the right thing to do to maximize the expected reward on the one
step, but exploration may produce the greater total reward in the long run. For example,
suppose a greedy action’s value is known with certainty, while several other actions are
estimated to be nearly as good but with substantial uncertainty. The uncertainty is
such that at least one of these other actions probably is actually better than the greedy
action, but you don’t know which one. If you have many time steps ahead on which
to make action selections, then it may be better to explore the nongreedy actions and
discover which of them are better than the greedy action. Reward is lower in the short
run, during exploration, but higher in the long run because after you have discovered
the better actions, you can exploit them many times. Because it is not possible both to
explore and to exploit with any single action selection, one often refers to the “conflict”
between exploration and exploitation.

In any specific case, whether it is better to explore or exploit depends in a complex
way on the precise values of the estimates, uncertainties, and the number of remaining
steps. There are many sophisticated methods for balancing exploration and exploitation
for particular mathematical formulations of the k-armed bandit and related problems.
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However, most of these methods make strong assumptions about stationarity and prior
knowledge that are either violated or impossible to verify in applications and in the full
reinforcement learning problem that we consider in subsequent chapters. The guarantees
of optimality or bounded loss for these methods are of little comfort when the assumptions
of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we present
several simple balancing methods for the k-armed bandit problem and show that they
work much better than methods that always exploit. The need to balance exploration
and exploitation is a distinctive challenge that arises in reinforcement learning; the
simplicity of our version of the k-armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-value Methods

We begin by looking more closely at methods for estimating the values of actions and
for using the estimates to make action selection decisions, which we collectively call
action-value methods. Recall that the true value of an action is the mean reward when
that action is selected. One natural way to estimate this is by averaging the rewards
actually received:

sum of rewards when a taken prior to ¢ Zf;i R 14,-¢

Qi(a) = : (2.1)

number of times a taken prior to ¢ ZZ:} 1a—q

where 1 predicate denotes the random variable that is 1 if predicate is true and 0 if it is not.
If the denominator is zero, then we instead define Q;(a) as some default value, such as
0. As the denominator goes to infinity, by the law of large numbers, Q;(a) converges to
g«(a). We call this the sample-average method for estimating action values because each
estimate is an average of the sample of relevant rewards. Of course this is just one way
to estimate action values, and not necessarily the best one. Nevertheless, for now let us
stay with this simple estimation method and turn to the question of how the estimates
might be used to select actions.

The simplest action selection rule is to select one of the actions with the highest
estimated value, that is, one of the greedy actions as defined in the previous section.
If there is more than one greedy action, then a selection is made among them in some
arbitrary way, perhaps randomly. We write this greedy action selection method as

Ay = argmax Q(a), (2.2)

where argmax, denotes the action a for which the expression that follows is maximized
(again, with ties broken arbitrarily). Greedy action selection always exploits current
knowledge to maximize immediate reward; it spends no time at all sampling apparently
inferior actions to see if they might really be better. A simple alternative is to behave
greedily most of the time, but every once in a while, say with small probability €, instead
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select randomly from among all the actions with equal probability, independently of
the action-value estimates. We call methods using this near-greedy action selection rule
e-greedy methods. An advantage of these methods is that, in the limit as the number of
steps increases, every action will be sampled an infinite number of times, thus ensuring
that all the Q;(a) converge to ¢.(a). This of course implies that the probability of selecting
the optimal action converges to greater than 1 — ¢, that is, to near certainty. These are
just asymptotic guarantees, however, and say little about the practical effectiveness of
the methods.

Ezercise 2.1 In e-greedy action selection, for the case of two actions and € = 0.5, what is
the probability that the greedy action is selected? O

2.3 The 10-armed Testbed

To roughly assess the relative effectiveness of the greedy and e-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k-armed bandit problems with k£ = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, ¢.(a), a = 1,...,10,

3
2
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1 Q*(S)
. Q*(g)
Reward “
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distribution b 4.(10)
1 2:(8)
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Figure 2.1: An example bandit problem from the 10-armed testbed. The true value g« (a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean g¢.(a) unit variance
normal distribution, as suggested by these gray distributions.
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were selected according to a normal (Gaussian) distribution with mean 0 and variance 1.
Then, when a learning method applied to that problem selected action A; at time step ¢,
the actual reward, R;, was selected from a normal distribution with mean ¢.(A;) and
variance 1. These distributions are shown in gray in Figure 2.1. We call this suite of test
tasks the 10-armed testbed. For any learning method, we can measure its performance
and behavior as it improves with experience over 1000 time steps when applied to one of
the bandit problems. This makes up one run. Repeating this for 2000 independent runs,
each with a different bandit problem, we obtained measures of the learning algorithm’s
average behavior.

Figure 2.2 compares a greedy method with two e-greedy methods (¢=0.01 and e=0.1),
as described above, on the 10-armed testbed. All the methods formed their action-value
estimates using the sample-average technique. The upper graph shows the increase in
expected reward with experience. The greedy method improved slightly faster than the
other methods at the very beginning, but then leveled off at a lower level. It achieved a
reward-per-step of only about 1, compared with the best possible of about 1.55 on this
testbed. The greedy method performed significantly worse in the long run because it

e=0.1
e=0.01
. LM b
e =0 (greed
Average £=0 (greedy)
reward
0.5 4
0 T T T T 1
1 250 500 750 1000
Steps
100% —,
80% | v o
e=0.1
% 0% £=0.01
Optimal
action 40%
e =0 (greedy)
20% -
0% T T T T 1
1 250 500 750 1000
Steps

Figure 2.2: Average performance of e-greedy action-value methods on the 10-armed testbed.
These data are averages over 2000 runs with different bandit problems. All methods used sample
averages as their action-value estimates.
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often got stuck performing suboptimal actions. The lower graph shows that the greedy
method found the optimal action in only approximately one-third of the tasks. In the
other two-thirds, its initial samples of the optimal action were disappointing, and it never
returned to it. The e-greedy methods eventually performed better because they continued
to explore and to improve their chances of recognizing the optimal action. The € = 0.1
method explored more, and usually found the optimal action earlier, but it never selected
that action more than 91% of the time. The € = 0.01 method improved more slowly, but
eventually would perform better than the ¢ = 0.1 method on both performance measures
shown in the figure. It is also possible to reduce € over time to try to get the best of both
high and low values.

The advantage of e-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier rewards
it takes more exploration to find the optimal action, and e-greedy methods should fare
even better relative to the greedy method. On the other hand, if the reward variances
were zero, then the greedy method would know the true value of each action after trying
it once. In this case the greedy method might actually perform best because it would
soon find the optimal action and then never explore. But even in the deterministic case
there is a large advantage to exploring if we weaken some of the other assumptions. For
example, suppose the bandit task were nonstationary, that is, the true values of the
actions changed over time. In this case exploration is needed even in the deterministic
case to make sure one of the nongreedy actions has not changed to become better than
the greedy one. As we shall see in the next few chapters, nonstationarity is the case
most commonly encountered in reinforcement learning. Even if the underlying task is
stationary and deterministic, the learner faces a set of banditlike decision tasks each of
which changes over time as learning proceeds and the agent’s decision-making policy
changes. Reinforcement learning requires a balance between exploration and exploitation.

Ezxercise 2.2: Bandit example Consider a k-armed bandit problem with k = 4 actions,
denoted 1, 2, 3, and 4. Consider applying to this problem a bandit algorithm using
e-greedy action selection, sample-average action-value estimates, and initial estimates
of Q1(a) =0, for all a. Suppose the initial sequence of actions and rewards is 4; = 1,
]“21:—].7 A2:2, RQZI, A3:2,R3:—2, A4:2, .R4:27 A5:3, R5:0. On some
of these time steps the € case may have occurred, causing an action to be selected at
random. On which time steps did this definitely occur? On which time steps could this
possibly have occurred? a

Ezercise 2.3 In the comparison shown in Figure 2.2, which method will perform best in
the long run in terms of cumulative reward and probability of selecting the best action?
How much better will it be? Express your answer quantitatively. O

2.4 Incremental Implementation
The action-value methods we have discussed so far all estimate action values as sample

averages of observed rewards. We now turn to the question of how these averages can be
computed in a computationally efficient manner, in particular, with constant memory
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and constant per-time-step computation.

To simplify notation we concentrate on a single action. Let R; now denote the reward
received after the ith selection of this action, and let @QQ,, denote the estimate of its action
value after it has been selected n — 1 times, which we can now write simply as

;R1—|—R2+"'+Rn_1
N n—1 '

Q@n

The obvious implementation would be to maintain a record of all the rewards and then
perform this computation whenever the estimated value was needed. However, if this is
done, then the memory and computational requirements would grow over time as more
rewards are seen. Each additional reward would require additional memory to store it
and additional computation to compute the sum in the numerator.

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given @),, and the nth reward, R,,, the new average of all n rewards
can be computed by

Qny1 = 1 ZRi
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= %(Rn +1Qn — Qn)
= Qn+ % [Rn - Qn}v (2.3)

which holds even for n = 1, obtaining Q2 = R; for arbitrary @);. This implementation
requires memory only for @, and n, and only the small computation (2.3) for each new
reward.

This update rule (2.3) is of a form that occurs frequently throughout this book. The
general form is

NewEstimate <— OldEstimate + StepSize [Target — OldEstimate|. (2.4)

The expression [Target— OldEstimate} is an error in the estimate. It is reduced by taking
a step toward the “Target.” The target is presumed to indicate a desirable direction in
which to move, though it may be noisy. In the case above, for example, the target is the
nth reward.

Note that the step-size parameter (StepSize) used in the incremental method (2.3)
changes from time step to time step. In processing the nth reward for action a, the
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method uses the step-size parameter % In this book we denote the step-size parameter
by « or, more generally, by o (a).

Pseudocode for a complete bandit algorithm using incrementally computed sample
averages and e-greedy action selection is shown in the box below. The function bandit(a)
is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:

Qa) 0
N(a)+ 0

Loop forever:
4 | argmax, Q(a) with probability 1 —e  (breaking ties randomly)
a random action with probability
R + bandit(A)
N(A)«+ N(A)+1
Q(A) — Q(4) + xir [R— Q(4)]

2.5 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriate for stationary bandit problems,
that is, for bandit problems in which the reward probabilities do not change over time.
As noted earlier, we often encounter reinforcement learning problems that are effectively
nonstationary. In such cases it makes sense to give more weight to recent rewards than
to long-past rewards. One of the most popular ways of doing this is to use a constant
step-size parameter. For example, the incremental update rule (2.3) for updating an
average ), of the n — 1 past rewards is modified to be

Qui1 = Qu +aRu— Qu. (2.5)

where the step-size parameter « € (0, 1] is constant. This results in Q11 being a weighted
average of past rewards and the initial estimate @Q1:

Quit = Qu+a[Ry=Qul

aR, + (1 —a)Q,

= aR,+(1—-a)laRu-1+ (1 —a)Qn_1]

= aR,+(1—-a)aR, 1+ (1 —a)’Q,_1
aR, 4+ (1 —a)aR,_1 + (1 —a)’aR, o+

(A=) taR + (1 —-a)"Q

= 1-0)"Q1+> a(l—a)" 'R, (2.6)
i=1
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We call this a weighted average because the sum of the weights is (1 — )" + > (1 —
a)?* =1, as you can check for yourself. Note that the weight, a(1 — )" ™%, given to the
reward R; depends on how many rewards ago, n — 4, it was observed. The quantity 1 — «
is less than 1, and thus the weight given to R; decreases as the number of intervening
rewards increases. In fact, the weight decays exponentially according to the exponent
onl—a. (If 1 —a=0,then all the weight goes on the very last reward, R,,, because
of the convention that 0° = 1.) Accordingly, this is sometimes called an exponential
recency-weighted average.

Sometimes it is convenient to vary the step-size parameter from step to step. Let ay,(a)
denote the step-size parameter used to process the reward received after the nth selection
of action a. As we have noted, the choice o, (a) = % results in the sample-average method,
which is guaranteed to converge to the true action values by the law of large numbers.
But of course convergence is not guaranteed for all choices of the sequence {ay,(a)}. A
well-known result in stochastic approximation theory gives us the conditions required to
assure convergence with probability 1:

Z ap(a) = oo and Z a2 (a) < . (2.7)

The first condition is required to guarantee that the steps are large enough to eventually
overcome any initial conditions or random fluctuations. The second condition guarantees
that eventually the steps become small enough to assure convergence.

Note that both convergence conditions are met for the sample-average case, a,(a) = -,
but not for the case of constant step-size parameter, ., (a) = «. In the latter case, the
second condition is not met, indicating that the estimates never completely converge but
continue to vary in response to the most recently received rewards. As we mentioned
above, this is actually desirable in a nonstationary environment, and problems that are
effectively nonstationary are the most common in reinforcement learning. In addition,
sequences of step-size parameters that meet the conditions (2.7) often converge very slowly
or need considerable tuning in order to obtain a satisfactory convergence rate. Although
sequences of step-size parameters that meet these convergence conditions are often used
in theoretical work, they are seldom used in applications and empirical research.

FEzxercise 2.4 1If the step-size parameters, a.,, are not constant, then the estimate @),, is
a weighted average of previously received rewards with a weighting different from that
given by (2.6). What is the weighting on each prior reward for the general case, analogous
to (2.6), in terms of the sequence of step-size parameters? O

Exercise 2.5 (programming) Design and conduct an experiment to demonstrate the
difficulties that sample-average methods have for nonstationary problems. Use a modified
version of the 10-armed testbed in which all the g.(a) start out equal and then take
independent random walks (say by adding a normally distributed increment with mean
zero and standard deviation 0.01 to all the ¢.(a) on each step). Prepare plots like
Figure 2.2 for an action-value method using sample averages, incrementally computed,
and another action-value method using a constant step-size parameter, o = 0.1. Use
€ = 0.1 and longer runs, say of 10,000 steps. (]
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2.6 Optimistic Initial Values

All the methods we have discussed so far are dependent to some extent on the initial
action-value estimates, Q1(a). In the language of statistics, these methods are biased
by their initial estimates. For the sample-average methods, the bias disappears once all
actions have been selected at least once, but for methods with constant «, the bias is
permanent, though decreasing over time as given by (2.6). In practice, this kind of bias
is usually not a problem and can sometimes be very helpful. The downside is that the
initial estimates become, in effect, a set of parameters that must be picked by the user, if
only to set them all to zero. The upside is that they provide an easy way to supply some
prior knowledge about what level of rewards can be expected.

Initial action values can also be used as a simple way to encourage exploration. Suppose
that instead of setting the initial action values to zero, as we did in the 10-armed testbed,
we set them all to +5. Recall that the ¢.(a) in this problem are selected from a normal
distribution with mean 0 and variance 1. An initial estimate of +5 is thus wildly optimistic.
But this optimism encourages action-value methods to explore. Whichever actions are
initially selected, the reward is less than the starting estimates; the learner switches to
other actions, being “disappointed” with the rewards it is receiving. The result is that all
actions are tried several times before the value estimates converge. The system does a
fair amount of exploration even if greedy actions are selected all the time.

Figure 2.3 shows the performance on the 10-armed bandit testbed of a greedy method
using Q1(a) = +5, for all a. For comparison, also shown is an e-greedy method with
Q1(a) = 0. Initially, the optimistic method performs worse because it explores more,
but eventually it performs better because its exploration decreases with time. We call
this technique for encouraging exploration optimistic initial values. We regard it as
a simple trick that can be quite effective on stationary problems, but it is far from
being a generally useful approach to encouraging exploration. For example, it is not
well suited to nonstationary problems because its drive for exploration is inherently

100%
Optimistic, greedy
Q1=5, e=0
80% 2
% 60% —| Realistic, € -greedy
. Q1=0, e=0.1
Optimal

action  40%

20% —
0% =7 T T T T |
1 200 400 600 800 1000

Steps

Figure 2.3: The effect of optimistic initial action-value estimates on the 10-armed testbed.
Both methods used a constant step-size parameter, a = 0.1.
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temporary. If the task changes, creating a renewed need for exploration, this method
cannot help. Indeed, any method that focuses on the initial conditions in any special way
is unlikely to help with the general nonstationary case. The beginning of time occurs
only once, and thus we should not focus on it too much. This criticism applies as well to
the sample-average methods, which also treat the beginning of time as a special event,
averaging all subsequent rewards with equal weights. Nevertheless, all of these methods
are very simple, and one of them—or some simple combination of them—is often adequate
in practice. In the rest of this book we make frequent use of several of these simple
exploration techniques.

Ezercise 2.6: Mysterious Spikes The results shown in Figure 2.3 should be quite reliable
because they are averages over 2000 individual, randomly chosen 10-armed bandit tasks.
Why, then, are there oscillations and spikes in the early part of the curve for the optimistic
method? In other words, what might make this method perform particularly better or
worse, on average, on particular early steps? (]

FEzxercise 2.7: Unbiased Constant-Step-Size Trick In most of this chapter we have used
sample averages to estimate action values because sample averages do not produce the
initial bias that constant step sizes do (see the analysis leading to (2.6)). However, sample
averages are not a completely satisfactory solution because they may perform poorly
on nonstationary problems. Is it possible to avoid the bias of constant step sizes while
retaining their advantages on nonstationary problems? One way is to use a step size of

Bn = a/0n, (2.8)

to process the nth reward for a particular action, where v > 0 is a conventional constant
step size, and 0, is a trace of one that starts at O:

On =0p—1+a(l —o,_1), forn >0, with oy =0. (2.9)

Carry out an analysis like that in (2.6) to show that @), is an exponential recency-weighted
average without initial bias. (I

2.7 Upper-Confidence-Bound Action Selection

Exploration is needed because there is always uncertainty about the accuracy of the
action-value estimates. The greedy actions are those that look best at present, but some of
the other actions may actually be better. e-greedy action selection forces the non-greedy
actions to be tried, but indiscriminately, with no preference for those that are nearly
greedy or particularly uncertain. It would be better to select among the non-greedy
actions according to their potential for actually being optimal, taking into account both
how close their estimates are to being maximal and the uncertainties in those estimates.
One effective way of doing this is to select actions according to

. Int
Ay = arg(rlnax th(a) +c Ni(a) 1 , (2.10)



36 Chapter 2: Multi-armed Bandits

where Int denotes the natural logarithm of ¢ (the number that e ~ 2.71828 would have
to be raised to in order to equal ¢), N¢(a) denotes the number of times that action a has
been selected prior to time ¢ (the denominator in (2.1)), and the number ¢ > 0 controls
the degree of exploration. If N;(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-root
term is a measure of the uncertainty or variance in the estimate of a’s value. The quantity
being max’ed over is thus a sort of upper bound on the possible true value of action a, with
¢ determining the confidence level. Each time «a is selected the uncertainty is presumably
reduced: Ny(a) increments, and, as it appears in the denominator, the uncertainty term
decreases. On the other hand, each time an action other than a is selected, ¢ increases but
N¢(a) does not; because ¢t appears in the numerator, the uncertainty estimate increases.
The use of the natural logarithm means that the increases get smaller over time, but are
unbounded; all actions will eventually be selected, but actions with lower value estimates,
or that have already been selected frequently, will be selected with decreasing frequency
over time.

Results with UCB on the 10-armed testbed are shown in Figure 2.4. UCB often
performs well, as shown here, but is more difficult than e-greedy to extend beyond bandits
to the more general reinforcement learning settings considered in the rest of this book.
One difficulty is in dealing with nonstationary problems; methods more complex than
those presented in Section 2.5 would be needed. Another difficulty is dealing with large
state spaces, particularly when using function approximation as developed in Part IT of
this book. In these more advanced settings the idea of UCB action selection is usually
not practical.

UCB c¢=2

g-greedy € =0.1

Average
reward

i 2I50 S(I)O 7I50 10I00
Steps
Figure 2.4: Average performance of UCB action selection on the 10-armed testbed. As shown,

UCB generally performs better than e-greedy action selection, except in the first k steps, when
it selects randomly among the as-yet-untried actions.

Ezercise 2.8: UCB Spikes In Figure 2.4 the UCB algorithm shows a distinct spike
in performance on the 11th step. Why is this? Note that for your answer to be fully
satisfactory it must explain both why the reward increases on the 11th step and why it
decreases on the subsequent steps. Hint: if ¢ = 1, then the spike is less prominent. [
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2.8 Gradient Bandit Algorithms

So far in this chapter we have considered methods that estimate action values and use
those estimates to select actions. This is often a good approach, but it is not the only
one possible. In this section we consider learning a numerical preference for each action
a, which we denote Hy(a). The larger the preference, the more often that action is taken,
but the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the action preferences there
is no effect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Hy(a)
Pr{d;=a} = W = m(a), (2.11)

where here we have also introduced a useful new notation, m;(a), for the probability of
taking action a at time ¢. Initially all action preferences are the same (e.g., Hi(a) =0,
for all a) so that all actions have an equal probability of being selected.

FEzercise 2.9 Show that in the case of two actions, the soft-max distribution is the same
as that given by the logistic, or sigmoid, function often used in statistics and artificial
neural networks. O

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting action A; and receiving the reward Ry, the
action preferences are updated by:

Ht+1(At) = Ht(At) =+ Ol(Rt — Rt) (1 — ﬂt(At))7 and

. _ (2.12)
Hyyq1(a) = Hi(a) — a(Rt — Rt)m(a), for all a # Ay,

where o > 0 is a step-size parameter, and R, € R is the average of all the rewards up
through and including time ¢, which can be computed incrementally as described in
Section 2.4 (or Section 2.5 if the problem is nonstationary). The R; term serves as a
baseline with which the reward is compared. If the reward is higher than the baseline,
then the probability of taking A; in the future is increased, and if the reward is below
baseline, then probability is decreased. The non-selected actions move in the opposite
direction.

Figure 2.5 shows results with the gradient bandit algorithm on a variant of the 10-
armed testbed in which the true expected rewards were selected according to a normal
distribution with a mean of +4 instead of zero (and with unit variance as before). This
shifting up of all the rewards has absolutely no effect on the gradient bandit algorithm
because of the reward baseline term, which instantaneously adapts to the new level. But
if the baseline were omitted (that is, if R; was taken to be constant zero in (2.12)), then
performance would be significantly degraded, as shown in the figure.
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Figure 2.5: Average performance of the gradient bandit algorithm with and without a reward
baseline on the 10-armed testbed when the g.(a) are chosen to be near +4 rather than near zero.

The Bandit Gradient Algorithm as Stochastic Gradient Ascent

One can gain a deeper insight into the gradient bandit algorithm by understanding
it as a stochastic approximation to gradient ascent. In exact gradient ascent, each
action preference Hy(a) would be incremented proportional to the increment’s effect
on performance:

OE[R.]
OHy(a)’

Hii1(a) = He(a) + « (2.13)

where the measure of performance here is the expected reward:
E[R] =) m(x)q. (),
xr

and the measure of the increment’s effect is the partial derivative of this performance
measure with respect to the action preference. Of course, it is not possible to
implement gradient ascent exactly in our case because by assumption we do not
know the g.(x), but in fact the updates of our algorithm (2.12) are equal to (2.13)
in expected value, making the algorithm an instance of stochastic gradient ascent.
The calculations showing this require only beginning calculus, but take several
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steps. First we take a closer look at the exact performance gradient:
OE[Ry]
0H,(a) 8Ht [Z B ]
aﬂ't ZZZ
=2 0@
(a)

- awt(x)
Z 4= (@) = 6Ht(a)

where By, called the baseline , can be any scalar that does not depend on z. We can
include a baseline here without changing the equality because the gradient sums
to zero over all the actions, g;}i((z)) = 0—as H(a) is changed, some actions
probabilities go up and some go down, but the sum of the changes must be zero
because the sum of the probabilities is always one.

Next we multiply each term of the sum by m(z) /7 (x):

a’ﬂ't X
8Ht Z’]Tt —Bt)al{t((a))/ﬂ't(x)

The equation is now in the form of an expectation, summing over all possible values
x of the random variable A;, then multiplying by the probability of taking those
values. Thus:

)

=E [(Q*(At) - Bt) %E(é;) /Wt(At)}

_E [(Rt i) %’;ﬁ(‘t; /m(Aa] ,

where here we have chosen the baseline B; = R; and substituted R; for q.(A;),
which is permitted because E[R:|A:] = ¢.«(A:). Shortly we will establish that
ggi((x)) =S Wt(l‘)(]la:z = ﬁt(a)), where 1,—, is defined to be 1 if a = z, else 0.

Assuming that for now, we have

=E[(R: — Ri)m(Ar) (La=a, — me(a)) /m(Ar)]
= E[(Rt - Rt) (]]-a:At - Wt(a))] :

Recall that our plan has been to write the performance gradient as an expectation
of something that we can sample on each step, as we have just done, and then
update on each step proportional to the sample. Substituting a sample of the
expectation above for the performance gradient in (2.13) yields:

Hii1(a) = He(a) + a(Rt = Rt) (]la:At = Wt(a)), for all a,

which you may recognize as being equivalent to our original algorithm (2.12).
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Thus it remains only to show that g;}i((z)) = () (La=s — m(a)), as we assumed.

Recall the standard quotient rule for derivatives:

9 [f(x)} _ U (@) - f(z) %2
oz | g(z) g(@)? '

Using this, we can write

a’/Tt(I') _ 3 . (;17)
OHy(a) 0H(a) '

0 et (=)
B 8Ht(a) 25:1 eHe(y)
9eHt(x) Zk th(y) _ th(x) 8211;:1 eHt ()

— OHi(a) Zv=l 5 9H,(a) (by the quotient rule)

(Zhoyeme)

1, eft@ Zkﬂ eHit(y) _ oHi(z) He(a) )
- — (because 83% = e*)

(Zlgjzl th(y)) i

]]-a:ert(m) th(:v)th(a)

% 3
>yt eHi(y) (Zlgjzl th(y))

= Lly—omi(x) — me(2)me(a)
= Wt(m)(]].azz — 7Tt(CL)). QED

We have just shown that the expected update of the gradient bandit algorithm
is equal to the gradient of expected reward, and thus that the algorithm is an
instance of stochastic gradient ascent. This assures us that the algorithm has robust
convergence properties.

Note that we did not require any properties of the reward baseline other than
that it does not depend on the selected action. For example, we could have set
it to zero, or to 1000, and the algorithm would still be an instance of stochastic
gradient ascent. The choice of the baseline does not affect the expected update
of the algorithm, but it does affect the variance of the update and thus the rate
of convergence (as shown, e.g., in Figure 2.5). Choosing it as the average of the
rewards may not be the very best, but it is simple and works well in practice.
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2.9 Associative Search (Contextual Bandits)

So far in this chapter we have considered only nonassociative tasks, that is, tasks in which
there is no need to associate different actions with different situations. In these tasks
the learner either tries to find a single best action when the task is stationary, or tries to
track the best action as it changes over time when the task is nonstationary. However,
in a general reinforcement learning task there is more than one situation, and the goal
is to learn a policy: a mapping from situations to the actions that are best in those
situations. To set the stage for the full problem, we briefly discuss the simplest way in
which nonassociative tasks extend to the associative setting.

As an example, suppose there are several different k-armed bandit tasks, and that on
each step you confront one of these chosen at random. Thus, the bandit task changes
randomly from step to step. This would appear to you as a single, nonstationary k-armed
bandit task whose true action values change randomly from step to step. You could
try using one of the methods described in this chapter that can handle nonstationarity,
but unless the true action values change slowly, these methods will not work very well.
Now suppose, however, that when a bandit task is selected for you, you are given some
distinctive clue about its identity (but not its action values). Maybe you are facing an
actual slot machine that changes the color of its display as it changes its action values.
Now you can learn a policy associating each task, signaled by the color you see, with
the best action to take when facing that task—for instance, if red, select arm 1; if green,
select arm 2. With the right policy you can usually do much better than you could in
the absence of any information distinguishing one bandit task from another.

This is an example of an associative search task, so called because it involves both
trial-and-error learning to search for the best actions, and association of these actions
with the situations in which they are best. Associative search tasks are often now called
contextual bandits in the literature. Associative search tasks are intermediate between
the k-armed bandit problem and the full reinforcement learning problem. They are like
the full reinforcement learning problem in that they involve learning a policy, but like
our version of the k-armed bandit problem in that each action affects only the immediate
reward. If actions are allowed to affect the next situation as well as the reward, then
we have the full reinforcement learning problem. We present this problem in the next
chapter and consider its ramifications throughout the rest of the book.

Ezxercise 2.10 Suppose you face a 2-armed bandit task whose true action values change
randomly from time step to time step. Specifically, suppose that, for any time step, the
true values of actions 1 and 2 are respectively 0.1 and 0.2 with probability 0.5 (case A),
and 0.9 and 0.8 with probability 0.5 (case B). If you are not able to tell which case you
face at any step, what is the best expectation of success you can achieve and how should
you behave to achieve it? Now suppose that on each step you are told whether you are
facing case A or case B (although you still don’t know the true action values). This is an
associative search task. What is the best expectation of success you can achieve in this
task, and how should you behave to achieve it? O
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2.10 Summary

We have presented in this chapter several simple ways of balancing exploration and
exploitation. The e-greedy methods choose randomly a small fraction of the time, whereas
UCB methods choose deterministically but achieve exploration by subtly favoring at each
step the actions that have so far received fewer samples. Gradient bandit algorithms
estimate not action values, but action preferences, and favor the more preferred actions
in a graded, probabilistic manner using a soft-max distribution. The simple expedient of
initializing estimates optimistically causes even greedy methods to explore significantly.

It is natural to ask which of these methods is best. Although this is a difficult question
to answer in general, we can certainly run them all on the 10-armed testbed that we
have used throughout this chapter and compare their performances. A complication is
that they all have a parameter; to get a meaningful comparison we have to consider
their performance as a function of their parameter. Our graphs so far have shown the
course of learning over time for each algorithm and parameter setting, to produce a
learning curve for that algorithm and parameter setting. If we plotted learning curves
for all algorithms and all parameter settings, then the graph would be too complex and
crowded to make clear comparisons. Instead we summarize a complete learning curve
by its average value over the 1000 steps; this value is proportional to the area under the
learning curve. Figure 2.6 shows this measure for the various bandit algorithms from
this chapter, each as a function of its own parameter shown on a single scale on the
x-axis. This kind of graph is called a parameter study. Note that the parameter values
are varied by factors of two and presented on a log scale. Note also the characteristic
inverted-U shapes of each algorithm’s performance; all the algorithms perform best at
an intermediate value of their parameter, neither too large nor too small. In assessing
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Figure 2.6: A parameter study of the various bandit algorithms presented in this chapter.
Each point is the average reward obtained over 1000 steps with a particular algorithm at a
particular setting of its parameter.
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a method, we should attend not just to how well it does at its best parameter setting,
but also to how sensitive it is to its parameter value. All of these algorithms are fairly
insensitive, performing well over a range of parameter values varying by about an order
of magnitude. Overall, on this problem, UCB seems to perform best.

Despite their simplicity, in our opinion the methods presented in this chapter can
fairly be considered the state of the art. There are more sophisticated methods, but their
complexity and assumptions make them impractical for the full reinforcement learning
problem that is our real focus. Starting in Chapter 5 we present learning methods for
solving the full reinforcement learning problem that use in part the simple methods
explored in this chapter.

Although the simple methods explored in this chapter may be the best we can do
at present, they are far from a fully satisfactory solution to the problem of balancing
exploration and exploitation.

One well-studied approach to balancing exploration and exploitation in k-armed bandit
problems is to compute a special kind of action value called a Gittins index. In certain
important special cases, this computation is tractable and leads directly to optimal
solutions, although it does require complete knowledge of the prior distribution of possible
problems, which we generally assume is not available. In addition, neither the theory
nor the computational tractability of this approach appear to generalize to the full
reinforcement learning problem that we consider in the rest of the book.

The Gittins-index approach is an instance of Bayesian methods, which assume a known
initial distribution over the action values and then update the distribution exactly after
each step (assuming that the true action values are stationary). In general, the update
computations can be very complex, but for certain special distributions (called conjugate
priors) they are easy. One possibility is to then select actions at each step according
to their posterior probability of being the best action. This method, sometimes called
posterior sampling or Thompson sampling, often performs similarly to the best of the
distribution-free methods we have presented in this chapter.

In the Bayesian setting it is even conceivable to compute the optimal balance between
exploration and exploitation. One can compute for any possible action the probability
of each possible immediate reward and the resultant posterior distributions over action
values. This evolving distribution becomes the information state of the problem. Given
a horizon, say of 1000 steps, one can consider all possible actions, all possible resulting
rewards, all possible next actions, all next rewards, and so on for all 1000 steps. Given
the assumptions, the rewards and probabilities of each possible chain of events can be
determined, and one need only pick the best. But the tree of possibilities grows extremely
rapidly; even if there were only two actions and two rewards, the tree would have 22000
leaves. It is generally not feasible to perform this immense computation exactly, but
perhaps it could be approximated efficiently. This approach would effectively turn the
bandit problem into an instance of the full reinforcement learning problem. In the end, we
may be able to use approximate reinforcement learning methods such as those presented
in Part II of this book to approach this optimal solution. But that is a topic for research
and beyond the scope of this introductory book.
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Ezercise 2.11 (programming) Make a figure analogous to Figure 2.6 for the nonstationary
case outlined in Exercise 2.5. Include the constant-step-size e-greedy algorithm with
a=0.1. Use runs of 200,000 steps and, as a performance measure for each algorithm and
parameter setting, use the average reward over the last 100,000 steps. O
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by Bellman (1956). Berry and Fristedt (1985) provide an extensive treatment of
bandit problems from the perspective of statistics. Narendra and Thathachar
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Bush and Mosteller, 1955; Estes, 1950).

The term greedy is often used in the heuristic search literature (e.g., Pearl, 1984).
The conflict between exploration and exploitation is known in control engineering
as the conflict between identification (or estimation) and control (e.g., Witten,
1976b). Feldbaum (1965) called it the dual control problem, referring to the
need to solve the two problems of identification and control simultaneously when
trying to control a system under uncertainty. In discussing aspects of genetic
algorithms, Holland (1975) emphasized the importance of this conflict, referring
to it as the conflict between the need to exploit and the need for new information.

Action-value methods for our k-armed bandit problem were first proposed by
Thathachar and Sastry (1985). These are often called estimator algorithms in the
learning automata literature. The term action value is due to Watkins (1989).
The first to use e-greedy methods may also have been Watkins (1989, p. 187),
but the idea is so simple that some earlier use seems likely.

This material falls under the general heading of stochastic iterative algorithms,
which is well covered by Bertsekas and Tsitsiklis (1996).

Optimistic initialization was used in reinforcement learning by Sutton (1996).

Early work on using estimates of the upper confidence bound to select actions
was done by Lai and Robbins (1985), Kaelbling (1993b), and Agrawal (1995).
The UCB algorithm we present here is called UCB1 in the literature and was
first developed by Auer, Cesa-Bianchi and Fischer (2002).

Gradient bandit algorithms are a special case of the gradient-based reinforcement
learning algorithms introduced by Williams (1992), and that later developed into
the actor—critic and policy-gradient algorithms that we treat later in this book.
Our development here was influenced by that by Balaraman Ravindran (personal
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communication). Further discussion of the choice of baseline is provided there
and by Greensmith, Bartlett, and Baxter (2002, 2004) and Dick (2015). Early
systematic studies of algorithms like this were done by Sutton (1984).

The term soft-maz for the action selection rule (2.11) is due to Bridle (1990).
This rule appears to have been first proposed by Luce (1959).

The term associative search and the corresponding problem were introduced by
Barto, Sutton, and Brouwer (1981). The term associative reinforcement learning
has also been used for associative search (Barto and Anandan, 1985), but we
prefer to reserve that term as a synonym for the full reinforcement learning
problem (as in Sutton, 1984). (And, as we noted, the modern literature also
uses the term “contextual bandits” for this problem.) We note that Thorndike’s
Law of Effect (quoted in Chapter 1) describes associative search by referring
to the formation of associative links between situations (states) and actions.
According to the terminology of operant, or instrumental, conditioning (e.g.,
Skinner, 1938), a discriminative stimulus is a stimulus that signals the presence
of a particular reinforcement contingency. In our terms, different discriminative
stimuli correspond to different states.

Bellman (1956) was the first to show how dynamic programming could be used
to compute the optimal balance between exploration and exploitation within a
Bayesian formulation of the problem. The Gittins index approach is due to Gittins
and Jones (1974). Duff (1995) showed how it is possible to learn Gittins indices
for bandit problems through reinforcement learning. The survey by Kumar (1985)
provides a good discussion of Bayesian and non-Bayesian approaches to these
problems. The term information state comes from the literature on partially
observable MDPs; see, e.g., Lovejoy (1991).

Other theoretical research focuses on the efficiency of exploration, usually ex-
pressed as how quickly an algorithm can approach an optimal decision-making
policy. One way to formalize exploration efficiency is by adapting to reinforcement
learning the notion of sample complexity for a supervised learning algorithm,
which is the number of training examples the algorithm needs to attain a desired
degree of accuracy in learning the target function. A definition of the sample
complexity of exploration for a reinforcement learning algorithm is the number of
time steps in which the algorithm does not select near-optimal actions (Kakade,
2003). Li (2012) discusses this and several other approaches in a survey of
theoretical approaches to exploration efficiency in reinforcement learning. A
thorough modern treatment of Thompson sampling is provided by Russo, Van
Roy, Kazerouni, Osband, and Wen (2018).






Chapter 3

Finite Markov Decision
Processes

In this chapter we introduce the formal problem of finite Markov decision processes, or
finite MDPs, which we try to solve in the rest of the book. This problem involves evaluative
feedback, as in bandits, but also an associative aspect—choosing different actions in
different situations. MDPs are a classical formalization of sequential decision making,
where actions influence not just immediate rewards, but also subsequent situations, or
states, and through those future rewards. Thus MDPs involve delayed reward and the
need to tradeoff immediate and delayed reward. Whereas in bandit problems we estimated
the value g.(a) of each action a, in MDPs we estimate the value g.(s,a) of each action a
in each state s, or we estimate the value v,(s) of each state given optimal action selections.
These state-dependent quantities are essential to accurately assigning credit for long-term
consequences to individual action selections.

MDPs are a mathematically idealized form of the reinforcement learning problem
for which precise theoretical statements can be made. We introduce key elements of
the problem’s mathematical structure, such as returns, value functions, and Bellman
equations. We try to convey the wide range of applications that can be formulated as
finite MDPs. As in all of artificial intelligence, there is a tension between breadth of
applicability and mathematical tractability. In this chapter we introduce this tension
and discuss some of the trade-offs and challenges that it implies. Some ways in which
reinforcement learning can be taken beyond MDPs are treated in Chapter 17.

3.1 The Agent—Environment Interface

MDPs are meant to be a straightforward framing of the problem of learning from
interaction to achieve a goal. The learner and decision maker is called the agent. The
thing it interacts with, comprising everything outside the agent, is called the environment.
These interact continually, the agent selecting actions and the environment responding to
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these actions and presenting new situations to the agent.! The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

A en’[I

| Agent |
state reward action
S, R, A
o Rl+1 (
_S.. | Environment ]4—

Figure 3.1: The agent—environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0,1,2,3,....2 At each time step ¢, the agent receives some representation
of the environment’s state, S; € 8, and on that basis selects an action, A; € A(s).> One
time step later, in part as a consequence of its action, the agent receives a numerical
reward, Ryy1 € R C R, and finds itself in a new state, Sy;;1.* The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

So, Ao, R1,51,A1,Ra, 82, A2, Rs, . .. (3.1)

In a finite MDP, the sets of states, actions, and rewards (8, A, and R) all have a finite
number of elements. In this case, the random variables R; and S; have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s’ € 8§ and r € R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s',r|s,a) = Pr{S;=s,Ri=r| Si_1=5,A_1=a}, (3.2)

for all ;s €8, r € R, and a € A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p: 8§ x R x 8§ x A — [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Riy1 instead of R; to denote the reward due to A; because it emphasizes that the next
reward and next state, R¢y1 and Si41, are jointly determined. Unfortunately, both conventions are
widely used in the literature.
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but here it just reminds us that p specifies a probability distribution for each choice of s
and a, that is, that

Z Zp(s’,ﬂs,a) =1, for all s € 8,a € A(s). (3.3)

s'eSreR

In a Markov decision process, the probabilities given by p completely characterize the
environment’s dynamics. That is, the probability of each possible value for S; and R;
depends only on the immediately preceding state and action, S;_; and A;_1, and, given
them, not at all on earlier states and actions. This is best viewed a restriction not on the
decision process, but on the state. The state must include information about all aspects
of the past agent—environment interaction that make a difference for the future. If it
does, then the state is said to have the Markov property. We will assume the Markov
property throughout this book, though starting in Part II we will consider approximation
methods that do not rely on it, and in Chapter 17 we consider how a Markov state can
be learned and constructed from non-Markov observations.

From the four-argument dynamics function, p, one can compute anything else one might
want to know about the environment, such as the state-transition probabilities (which we
denote, with a slight abuse of notation, as a three-argument function p : § x8 x A — [0, 1]),

p(s'|s,a) = Pr{Si=s"|Si_1=s,4i_1=a} = Zp(s',r|s,a). (3.4)
reR

We can also compute the expected rewards for state—action pairs as a two-argument
function r : § x A — R:

r(s,a) = E[R; | Si—1=s,Ai-1=a] = ZTZp(s',Hs,a), (3.5)

reR s'€8

and the expected rewards for state—action—next-state triples as a three-argument function
r:8xAx8—=R,

T(Saaasl) = E[R; | Si—1=5,A-1=0a,5; = S Z ol i r\s a) . (3.6)

“p(s']s,a)

In this book, we usually use the four-argument p function (3.2), but each of these other
notations are also occasionally convenient.

The MDP framework is abstract and flexible and can be applied to many different
problems in many different ways. For example, the time steps need not refer to fixed
intervals of real time; they can refer to arbitrary successive stages of decision making
and acting. The actions can be low-level controls, such as the voltages applied to the
motors of a robot arm, or high-level decisions, such as whether or not to have lunch or
to go to graduate school. Similarly, the states can take a wide variety of forms. They
can be completely determined by low-level sensations, such as direct sensor readings, or
they can be more high-level and abstract, such as symbolic descriptions of objects in a
room. Some of what makes up a state could be based on memory of past sensations or
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even be entirely mental or subjective. For example, an agent could be in the state of not
being sure where an object is, or of having just been surprised in some clearly defined
sense. Similarly, some actions might be totally mental or computational. For example,
some actions might control what an agent chooses to think about, or where it focuses its
attention. In general, actions can be any decisions we want to learn how to make, and
the states can be anything we can know that might be useful in making them.

In particular, the boundary between agent and environment is typically not the same
as the physical boundary of a robot’s or animal’s body. Usually, the boundary is drawn
closer to the agent than that. For example, the motors and mechanical linkages of a robot
and its sensing hardware should usually be considered parts of the environment rather
than parts of the agent. Similarly, if we apply the MDP framework to a person or animal,
the muscles, skeleton, and sensory organs should be considered part of the environment.
Rewards, too, presumably are computed inside the physical bodies of natural and artificial
learning systems, but are considered external to the agent.

The general rule we follow is that anything that cannot be changed arbitrarily by
the agent is considered to be outside of it and thus part of its environment. We do
not assume that everything in the environment is unknown to the agent. For example,
the agent often knows quite a bit about how its rewards are computed as a function of
its actions and the states in which they are taken. But we always consider the reward
computation to be external to the agent because it defines the task facing the agent and
thus must be beyond its ability to change arbitrarily. In fact, in some cases the agent may
know everything about how its environment works and still face a difficult reinforcement
learning task, just as we may know exactly how a puzzle like Rubik’s cube works, but
still be unable to solve it. The agent—environment boundary represents the limit of the
agent’s absolute control, not of its knowledge.

The agent—environment boundary can be located at different places for different
purposes. In a complicated robot, many different agents may be operating at once, each
with its own boundary. For example, one agent may make high-level decisions which form
part of the states faced by a lower-level agent that implements the high-level decisions. In
practice, the agent—environment boundary is determined once one has selected particular
states, actions, and rewards, and thus has identified a specific decision making task of
interest.

The MDP framework is a considerable abstraction of the problem of goal-directed
learning from interaction. It proposes that whatever the details of the sensory, memory,
and control apparatus, and whatever objective one is trying to achieve, any problem of
learning goal-directed behavior can be reduced to three signals passing back and forth
between an agent and its environment: one signal to represent the choices made by the
agent (the actions), one signal to represent the basis on which the choices are made (the
states), and one signal to define the agent’s goal (the rewards). This framework may not
be sufficient to represent all decision-learning problems usefully, but it has proved to be
widely useful and applicable.

Of course, the particular states and actions vary greatly from task to task, and how
they are represented can strongly affect performance. In reinforcement learning, as in
other kinds of learning, such representational choices are at present more art than science.
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In this book we offer some advice and examples regarding good ways of representing
states and actions, but our primary focus is on general principles for learning how to
behave once the representations have been selected.

Example 3.1: Bioreactor Suppose reinforcement learning is being applied to determine
moment-by-moment temperatures and stirring rates for a bioreactor (a large vat of
nutrients and bacteria used to produce useful chemicals). The actions in such an
application might be target temperatures and target stirring rates that are passed to
lower-level control systems that, in turn, directly activate heating elements and motors to
attain the targets. The states are likely to be thermocouple and other sensory readings,
perhaps filtered and delayed, plus symbolic inputs representing the ingredients in the
vat and the target chemical. The rewards might be moment-by-moment measures of the
rate at which the useful chemical is produced by the bioreactor. Notice that here each
state is a list, or vector, of sensor readings and symbolic inputs, and each action is a
vector consisting of a target temperature and a stirring rate. It is typical of reinforcement
learning tasks to have states and actions with such structured representations. Rewards,
on the other hand, are always single numbers. [ |

Example 3.2: Pick-and-Place Robot Consider using reinforcement learning to
control the motion of a robot arm in a repetitive pick-and-place task. If we want to learn
movements that are fast and smooth, the learning agent will have to control the motors
directly and have low-latency information about the current positions and velocities of the
mechanical linkages. The actions in this case might be the voltages applied to each motor
at each joint, and the states might be the latest readings of joint angles and velocities.
The reward might be +1 for each object successfully picked up and placed. To encourage
smooth movements, on each time step a small, negative reward can be given as a function
of the moment-to-moment “jerkiness” of the motion. [ ]

FEzercise 3.1 Devise three example tasks of your own that fit into the MDP framework,
identifying for each its states, actions, and rewards. Make the three examples as different
from each other as possible. The framework is abstract and flexible and can be applied in
many different ways. Stretch its limits in some way in at least one of your examples. [J

FEzercise 3.2 Is the MDP framework adequate to usefully represent all goal-directed
learning tasks? Can you think of any clear exceptions? |

Ezercise 3.3 Consider the problem of driving. You could define the actions in terms of
the accelerator, steering wheel, and brake, that is, where your body meets the machine.
Or you could define them farther out—say, where the rubber meets the road, considering
your actions to be tire torques. Or you could define them farther in—say, where your
brain meets your body, the actions being muscle twitches to control your limbs. Or you
could go to a really high level and say that your actions are your choices of where to drive.
What is the right level, the right place to draw the line between agent and environment?
On what basis is one location of the line to be preferred over another? Is there any
fundamental reason for preferring one location over another, or is it a free choice? [
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Example 3.3 Recycling Robot

A mobile robot has the job of collecting empty soda cans in an office environment. It
has sensors for detecting cans, and an arm and gripper that can pick them up and place
them in an onboard bin; it runs on a rechargeable battery. The robot’s control system
has components for interpreting sensory information, for navigating, and for controlling
the arm and gripper. High-level decisions about how to search for cans are made by a
reinforcement learning agent based on the current charge level of the battery. To make a
simple example, we assume that only two charge levels can be distinguished, comprising
a small state set § = {high,low}. In each state, the agent can decide whether to (1)
actively search for a can for a certain period of time, (2) remain stationary and wait
for someone to bring it a can, or (3) head back to its home base to recharge its battery.
When the energy level is high, recharging would always be foolish, so we do not include it
in the action set for this state. The action sets are then A(high) = {search,wait} and
A(low) = {search, wait, recharge}.

The rewards are zero most of the time, but become positive when the robot secures an
empty can, or large and negative if the battery runs all the way down. The best way to
find cans is to actively search for them, but this runs down the robot’s battery, whereas
waiting does not. Whenever the robot is searching, the possibility exists that its battery
will become depleted. In this case the robot must shut down and wait to be rescued
(producing a low reward). If the energy level is high, then a period of active search can
always be completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability « and reduces
it to low with probability 1 — a. On the other hand, a period of searching undertaken
when the energy level is low leaves it low with probability S and depletes the battery
with probability 1 — 8. In the latter case, the robot must be rescued, and the battery is
then recharged back to high. Each can collected by the robot counts as a unit reward,
whereas a reward of —3 results whenever the robot has to be rescued. Let rsearch and
Twait, With Tsearch > Twait, respectively denote the expected number of cans the robot
will collect (and hence the expected reward) while searching and while waiting. Finally,
suppose that no cans can be collected during a run home for recharging, and that no cans
can be collected on a step in which the battery is depleted. This system is then a finite
MDP, and we can write down the transition probabilities and the expected rewards, with
dynamics as indicated in the table on the left:

1, Tvait 1-8,-3 B, Tsearcn
s a s’ p(s'|s,a) | r(s,a,s’) ’
high search high @ Tsearch
high  search low l1-—a Tsearch
low search high | 1 -7 -3
low search low B Tsearch , recharge
high wait high 1 Twait
high wait low 0 -
low wait high | O -
low wait low 1 Twait
low recharge  high 1 0
low recharge low 0 -

&, T'search 11—, Tsearcn 1, Tyait

Note that there is a row in the table for each possible combination of current state, s,
action, a € A(s), and next state, s'. Some transitions have zero probability of occurring,
so no expected reward is specified for them. Shown on the right is another useful way of
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summarizing the dynamics of a finite MDP, as a transition graph. There are two kinds of
nodes: state nodes and action nodes. There is a state node for each possible state (a large
open circle labeled by the name of the state), and an action node for each state—action
pair (a small solid circle labeled by the name of the action and connected by a line to the
state node). Starting in state s and taking action a moves you along the line from state
node s to action node (s,a). Then the environment responds with a transition to the next
state’s node via one of the arrows leaving action node (s, a). Each arrow corresponds to
a triple (s,s’,a), where s’ is the next state, and we label the arrow with the transition
probability, p(s’|s, a), and the expected reward for that transition, r(s,a,s’). Note that
the transition probabilities labeling the arrows leaving an action node always sum to 1.

\ J

Ezercise 3.4 Give a table analogous to that in Example 3.3, but for p(s’,r|s,a). It
should have columus for s, a, s, r, and p(s',7|s,a), and a row for every 4-tuple for which
p(s’,r]s,a) > 0. O

3.2 Goals and Rewards

In reinforcement learning, the purpose or goal of the agent is formalized in terms of a
special signal, called the reward, passing from the environment to the agent. At each time
step, the reward is a simple number, R; € R. Informally, the agent’s goal is to maximize
the total amount of reward it receives. This means maximizing not immediate reward,
but cumulative reward in the long run. We can clearly state this informal idea as the
reward hypothesis:

That all of what we mean by goals and purposes can be well thought of as
the maximization of the expected value of the cumulative sum of a received
scalar signal (called reward).

The use of a reward signal to formalize the idea of a goal is one of the most distinctive
features of reinforcement learning.

Although formulating goals in terms of reward signals might at first appear limiting,
in practice it has proved to be flexible and widely applicable. The best way to see this is
to consider examples of how it has been, or could be, used. For example, to make a robot
learn to walk, researchers have provided reward on each time step proportional to the
robot’s forward motion. In making a robot learn how to escape from a maze, the reward
is often —1 for every time step that passes prior to escape; this encourages the agent to
escape as quickly as possible. To make a robot learn to find and collect empty soda cans
for recycling, one might give it a reward of zero most of the time, and then a reward of
+1 for each can collected. One might also want to give the robot negative rewards when
it bumps into things or when somebody yells at it. For an agent to learn to play checkers
or chess, the natural rewards are +1 for winning, —1 for losing, and 0 for drawing and
for all nonterminal positions.

You can see what is happening in all of these examples. The agent always learns to
maximize its reward. If we want it to do something for us, we must provide rewards
to it in such a way that in maximizing them the agent will also achieve our goals. It
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is thus critical that the rewards we set up truly indicate what we want accomplished.
In particular, the reward signal is not the place to impart to the agent prior knowledge
about how to achieve what we want it to do.® For example, a chess-playing agent should
be rewarded only for actually winning, not for achieving subgoals such as taking its
opponent’s pieces or gaining control of the center of the board. If achieving these sorts
of subgoals were rewarded, then the agent might find a way to achieve them without
achieving the real goal. For example, it might find a way to take the opponent’s pieces
even at the cost of losing the game. The reward signal is your way of communicating to
the robot what you want it to achieve, not how you want it achieved.b

3.3 Returns and Episodes

So far we have discussed the objective of learning informally. We have said that the
agent’s goal is to maximize the cumulative reward it receives in the long run. How might
this be defined formally? If the sequence of rewards received after time step ¢ is denoted
Riy1,Riyo, Riys, ..., then what precise aspect of this sequence do we wish to maximize?
In general, we seek to maximize the expected return, where the return, denoted Gy, is
defined as some specific function of the reward sequence. In the simplest case the return
is the sum of the rewards:

Gt = Riy1 + Rypo + Ryyz + -+ Ry, (3.7)

where T is a final time step. This approach makes sense in applications in which there
is a natural notion of final time step, that is, when the agent—environment interaction
breaks naturally into subsequences, which we call episodes,” such as plays of a game,
trips through a maze, or any sort of repeated interaction. Each episode ends in a special
state called the terminal state, followed by a reset to a standard starting state or to a
sample from a standard distribution of starting states. Even if you think of episodes as
ending in different ways, such as winning and losing a game, the next episode begins
independently of how the previous one ended. Thus the episodes can all be considered to
end in the same terminal state, with different rewards for the different outcomes. Tasks
with episodes of this kind are called episodic tasks. In episodic tasks we sometimes need
to distinguish the set of all nonterminal states, denoted 8, from the set of all states plus
the terminal state, denoted 8. The time of termination, 7', is a random variable that
normally varies from episode to episode.

On the other hand, in many cases the agent—environment interaction does not break
naturally into identifiable episodes, but goes on continually without limit. For example,
this would be the natural way to formulate an on-going process-control task, or an
application to a robot with a long life span. We call these continuing tasks. The return
formulation (3.7) is problematic for continuing tasks because the final time step would

5Better places for imparting this kind of prior knowledge are the initial policy or initial value function,
or in influences on these.

6Section 17.4 delves further into the issue of designing effective reward signals.
"Episodes are sometimes called “trials” in the literature.
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be T = oo, and the return, which is what we are trying to maximize, could itself easily
be infinite. (For example, suppose the agent receives a reward of +1 at each time step.)
Thus, in this book we usually use a definition of return that is slightly more complex
conceptually but much simpler mathematically.

The additional concept that we need is that of discounting. According to this approach,
the agent tries to select actions so that the sum of the discounted rewards it receives over
the future is maximized. In particular, it chooses A; to maximize the expected discounted
return:

Gy = Rt+1 + ’)/Rt+2 + ’}/2Rt+3 +.- = Z’Yth+k+1, (3.8)
k=0

where v is a parameter, 0 < v < 1, called the discount rate.

The discount rate determines the present value of future rewards: a reward received
k time steps in the future is worth only v¥~! times what it would be worth if it were
received immediately. If v < 1, the infinite sum in (3.8) has a finite value as long as the
reward sequence {Ry} is bounded. If v = 0, the agent is “myopic” in being concerned
only with maximizing immediate rewards: its objective in this case is to learn how to
choose A; so as to maximize only R;y;. If each of the agent’s actions happened to
influence only the immediate reward, not future rewards as well, then a myopic agent
could maximize (3.8) by separately maximizing each immediate reward. But in general,
acting to maximize immediate reward can reduce access to future rewards so that the
return is reduced. As v approaches 1, the return objective takes future rewards into
account more strongly; the agent becomes more farsighted.

Returns at successive time steps are related to each other in a way that is important
for the theory and algorithms of reinforcement learning:

Gy = Rip1 +YRiso + V2 Riys + VP Ryqs + - -
= Riy1+7(Rigo +YRiss + YV’ Riga + )
= Rit1 + G (3.9)

Note that this works for all time steps ¢t < T', even if termination occurs at ¢t + 1, if we
define G = 0. This often makes it easy to compute returns from reward sequences.

Note that although the return (3.8) is a sum of an infinite number of terms, it is still
finite if the reward is nonzero and constant—if v < 1. For example, if the reward is a
constant 41, then the return is

= 1
Gi=Y 7= T (3.10)
k=0 v

Ezercise 3.5 The equations in Section 3.1 are for the continuing case and need to be
modified (very slightly) to apply to episodic tasks. Show that you know the modifications
needed by giving the modified version of (3.3). O
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Example 3.4: Pole-Balancing

The objective in this task is to apply

forces to a cart moving along a track

so as to keep a pole hinged to the cart

from falling over: A failure is said to

occur if the pole falls past a given angle

from vertical or if the cart runs off the

track. The pole is reset to vertical

after each failure. This task could be — | DYE [
treated as episodic, where the natural

episodes are the repeated attempts to balance the pole. The reward in this case could be
+1 for every time step on which failure did not occur, so that the return at each time
would be the number of steps until failure. In this case, successful balancing forever would
mean a return of infinity. Alternatively, we could treat pole-balancing as a continuing
task, using discounting. In this case the reward would be —1 on each failure and zero at
all other times. The return at each time would then be related to —y%, where K is the
number of time steps before failure. In either case, the return is maximized by keeping
the pole balanced for as long as possible. [ ]

Ezercise 3.6 Suppose you treated pole-balancing as an episodic task but also used
discounting, with all rewards zero except for —1 upon failure. What then would the
return be at each time? How does this return differ from that in the discounted, continuing
formulation of this task? O

Exercise 3.7 Imagine that you are designing a robot to run a maze. You decide to give it a
reward of +1 for escaping from the maze and a reward of zero at all other times. The task
seems to break down naturally into episodes—the successive runs through the maze—so
you decide to treat it as an episodic task, where the goal is to maximize expected total
reward (3.7). After running the learning agent for a while, you find that it is showing
no improvement in escaping from the maze. What is going wrong? Have you effectively

communicated to the agent what you want it to achieve? O
Ezercise 3.8 Suppose v = 0.5 and the following sequence of rewards is received Ry = —1,
Ry =2, R3 =6, Ry = 3, and R5 = 2, with T' = 5. What are Gy, G1, ..., G57 Hint:
Work backwards. (]
Ezercise 3.9 Suppose v = 0.9 and the reward sequence is R; = 2 followed by an infinite
sequence of 7s. What are G; and G¢? ]

Ezercise 3.10 Prove the second equality in (3.10). O
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3.4 Unified Notation for Episodic and Continuing Tasks

In the preceding section we described two kinds of reinforcement learning tasks, one
in which the agent—environment interaction naturally breaks down into a sequence of
separate episodes (episodic tasks), and one in which it does not (continuing tasks). The
former case is mathematically easier because each action affects only the finite number of
rewards subsequently received during the episode. In this book we consider sometimes
one kind of problem and sometimes the other, but often both. It is therefore useful to
establish one notation that enables us to talk precisely about both cases simultaneously.

To be precise about episodic tasks requires some additional notation. Rather than one
long sequence of time steps, we need to consider a series of episodes, each of which consists
of a finite sequence of time steps. We number the time steps of each episode starting
anew from zero. Therefore, we have to refer not just to S;, the state representation at
time ¢, but to S, ;, the state representation at time ¢ of episode i (and similarly for A, ;,
Ry i, T4, T, ete.). However, it turns out that when we discuss episodic tasks we almost
never have to distinguish between different episodes. We are almost always considering a
particular single episode, or stating something that is true for all episodes. Accordingly,
in practice we almost always abuse notation slightly by dropping the explicit reference to
episode number. That is, we write S; to refer to S ;, and so on.

We need one other convention to obtain a single notation that covers both episodic
and continuing tasks. We have defined the return as a sum over a finite number of terms
in one case (3.7) and as a sum over an infinite number of terms in the other (3.8). These
two can be unified by considering episode termination to be the entering of a special
absorbing state that transitions only to itself and that generates only rewards of zero. For
example, consider the state transition diagram:

R,=0

R, =+1 R,=+1 R.=+1

Here the solid square represents the special absorbing state corresponding to the end of an
episode. Starting from Sy, we get the reward sequence +1,+1,+1,0,0,0,.... Summing
these, we get the same return whether we sum over the first T rewards (here T' = 3) or
over the full infinite sequence. This remains true even if we introduce discounting. Thus,
we can define the return, in general, according to (3.8), using the convention of omitting
episode numbers when they are not needed, and including the possibility that v = 1 if the
sum remains defined (e.g., because all episodes terminate). Alternatively, we can write

T
Ge= > "R, (3.11)
k=t+1

including the possibility that T'= oo or v = 1 (but not both). We use these conventions
throughout the rest of the book to simplify notation and to express the close parallels
between episodic and continuing tasks. (Later, in Chapter 10, we will introduce a
formulation that is both continuing and undiscounted.)
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3.5 Policies and Value Functions

Almost all reinforcement learning algorithms involve estimating value functions—functions
of states (or of state—action pairs) that estimate how good it is for the agent to be in a
given state (or how good it is to perform a given action in a given state). The notion
of “how good” here is defined in terms of future rewards that can be expected, or, to
be precise, in terms of expected return. Of course the rewards the agent can expect to
receive in the future depend on what actions it will take. Accordingly, value functions
are defined with respect to particular ways of acting, called policies.

Formally, a policy is a mapping from states to probabilities of selecting each possible
action. If the agent is following policy 7 at time ¢, then 7(a|s) is the probability that
Ay =aif Sy =s. Like p, 7 is an ordinary function; the “|” in the middle of 7 (als)
merely reminds that it defines a probability distribution over a € A(s) for each s € 8.
Reinforcement learning methods specify how the agent’s policy is changed as a result of
its experience.

Ezercise 8.11 If the current state is S, and actions are selected according to stochastic
policy m, then what is the expectation of R;y; in terms of 7 and the four-argument
function p (3.2)? O

The value function of a state s under a policy 7, denoted v, (s), is the expected return
when starting in s and following 7 thereafter. For MDPs, we can define v, formally by

o0

k
> A Ritri
k=0

vr(8) = EiG: | Si=s] = Ex

St:s] , for all s € 8, (3.12)

where E[] denotes the expected value of a random variable given that the agent follows
policy m, and ¢ is any time step. Note that the value of the terminal state, if any, is
always zero. We call the function v, the state-value function for policy .

Similarly, we define the value of taking action a in state s under a policy 7, denoted
g=(s,a), as the expected return starting from s, taking the action a, and thereafter
following policy :

)
g=(s,a) = Ei[Gi| Si=s,4,=a] = E; ZVthJrkH Si=s,A1=a (3.13)
k=0
We call g, the action-value function for policy .
Ezercise 8.12 Give an equation for v, in terms of ¢, and 7. |
FEzercise 3.13 Give an equation for ¢, in terms of v, and the four-argument p. O

The value functions v, and g, can be estimated from experience. For example, if an
agent follows policy m and maintains an average, for each state encountered, of the actual
returns that have followed that state, then the average will converge to the state’s value,
vr(8), as the number of times that state is encountered approaches infinity. If separate
averages are kept for each action taken in each state, then these averages will similarly
converge to the action values, ¢-(s,a). We call estimation methods of this kind Monte
Carlo methods because they involve averaging over many random samples of actual returns.
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These kinds of methods are presented in Chapter 5. Of course, if there are very many
states, then it may not be practical to keep separate averages for each state individually.
Instead, the agent would have to maintain v, and ¢, as parameterized functions (with
fewer parameters than states) and adjust the parameters to better match the observed
returns. This can also produce accurate estimates, although much depends on the nature
of the parameterized function approximator. These possibilities are discussed in Part II
of the book.

A fundamental property of value functions used throughout reinforcement learning and
dynamic programming is that they satisfy recursive relationships similar to that which
we have already established for the return (3.9). For any policy 7 and any state s, the
following consistency condition holds between the value of s and the value of its possible
successor states:

v (8) = E[Gy | Si=34]

=ErRis1 + 7G4 | Si=s] (by (3.9))
= Z w(als) Z Zp(s’, r|s,a) {7“ + VEA[G41]St+1 :s']}

= Zw(a\s) Zp(s’,ﬂs, a) {7‘ + vvﬂ(s’)}, for all s €8, (3.14)

where it is implicit that the actions, a, are taken from the set A(s), that the next states,
s', are taken from the set § (or from 8 in the case of an episodic problem), and that
the rewards, r, are taken from the set R. Note also how in the last equation we have
merged the two sums, one over all the values of s’ and the other over all the values of r,
into one sum over all the possible values of both. We use this kind of merged sum often
to simplify formulas. Note how the final expression can be read easily as an expected
value. It is really a sum over all values of the three variables, a, s’, and r. For each triple,
we compute its probability, m(a|s)p(s’,7|s,a), weight the quantity in brackets by that
probability, then sum over all possibilities to get an expected value.
Equation (3.14) is the Bellman equation for v,. It expresses
a relationship between the value of a state and the values of
its successor states. Think of looking ahead from a state to its T
possible successor states, as suggested by the diagram to the
right. Each open circle represents a state and each solid circle o\ T
represents a state—action pair. Starting from state s, the root 30 30 & O
node at the top, the agent could take any of some set of actions—
three are shown in the diagram—based on its policy 7. From
each of these, the environment could respond with one of several next states, s’ (two are
shown in the figure), along with a reward, r, depending on its dynamics given by the
function p. The Bellman equation (3.14) averages over all the possibilities, weighting each
by its probability of occurring. It states that the value of the start state must equal the
(discounted) value of the expected next state, plus the reward expected along the way.
The value function v, is the unique solution to its Bellman equation. We show in
subsequent chapters how this Bellman equation forms the basis of a number of ways to

Backup diagram for v,
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compute, approximate, and learn v,. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state-action pair) from its successor states (or
state—action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent off the grid leave its location unchanged, but also result in a reward
of —1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A’. From state B, all actions yield a reward of +5 and take the agent to B’.

Ad |B\ 3.3 8.8/ 4.4/5.3/1.5
\ +5 1.5|3.0] 2.3/ 1.9] 0.5
+10) B 4—1—» 0.1/0.7 0.7 0.4|-0.4)
/ -1.0-0.4/-0.4-0.61-1.2

A4 Actions 1.9-1.3-1.9-1.4]-2.0

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v,, for this policy, for the discounted reward case with
v = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A’, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B’, which has a positive value. From B’ the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B. [ ]

Ezercise 8.1/ The Bellman equation (3.14) must hold for each state for the value function
vr shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at 40.7, with respect to its four neighboring states, valued at
+2.3, +0.4, —0.4, and +0.7. (These numbers are accurate only to one decimal place.) O

FEzercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these
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rewards important, or only the intervals between them? Prove, using (3.8), that adding a
constant ¢ to all the rewards adds a constant, v., to the values of all states, and thus
does not affect the relative values of any states under any policies. What is v, in terms
of ¢ and ~7 a

Ezercise 3.16 Now consider adding a constant ¢ to all the rewards in an episodic task,
such as maze running. Would this have any effect, or would it leave the task unchanged
as in the continuing task above? Why or why not? Give an example. O

Example 3.6: Golf To formulate playing a hole of golf as a reinforcement learning
task, we count a penalty (negative reward) of —1 for each stroke until we hit the ball
into the hole. The state is the location of the ball. The value of a state is the negative of
the number of strokes to the hole from that location. Our actions are how we aim and
swing at the ball, of course, and which club we select. Let us take the former as given
and consider just the choice of club, which we assume is either a putter or a driver. The
upper part of Figure 3.3 shows a possible state-value function, vpue(s), for the policy that
always uses the putter. The terminal
state in-the-hole has a value of 0. From
anywhere on the green we assume we can
make a putt; these states have value —1.
Off the green we cannot reach the hole
by putting, and the value is greater. If %

we can reach the green from a state by s
putting, then that state must have value
one less than the green’s value, that is,
—2. For simplicity, let us assume we can
putt very precisely and deterministically,
but with a limited range. This gives us
the sharp contour line labeled —2 in the
figure; all locations between that line and
the green require exactly two strokes to
complete the hole. Similarly, any location
within putting range of the —2 contour
line must have a value of —3, and so
on to get all the contour lines shown in
the figure. Putting doesn’t get us out of
sand traps, so they have a value of —oo.
Overall, it takes us six strokes to get from
the tee to the hole by putting.

'Uputt

Figure 3.3: A golf example: the state-value func-
tion for putting (upper) and the optimal action-
value function for using the driver (lower). [ ]

Ezxercise 3.17 What is the Bellman equation for action values, that S, a

is, for g7 Tt must give the action value ¢,(s,a) in terms of the action /N
values, ¢ (s',a’), of possible successors to the state—action pair (s,a). s
Hint: the backup diagram to the right corresponds to this equation.

Show the sequence of equations analogous to (3.14), but for action A

i
values. ¢ o o oa

¢ backup diagram
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Ezxercise 3.18 The value of a state depends on the values of the actions possible in that
state and on how likely each action is to be taken under the current policy. We can
think of this in terms of a small backup diagram rooted at the state and considering each
possible action:

S
taken with ‘—f_‘vﬂ (S)
probability 7(als) <,
P S N
a1 a2 as

Give the equation corresponding to this intuition and diagram for the value at the root
node, v;(s), in terms of the value at the expected leaf node, ¢, (s, a), given Sy = s. This
equation should include an expectation conditioned on following the policy, . Then give
a second equation in which the expected value is written out explicitly in terms of w(als)
such that no expected value notation appears in the equation. O

Ezercise 3.19 The value of an action, ¢,(s,a), depends on the expected next reward and
the expected sum of the remaining rewards. Again we can think of this in terms of a
small backup diagram, this one rooted at an action (state—action pair) and branching to
the possible next states:

expected §,a <__/r—q,r(s, a)
2| 73 ,
v (s
" o o
51 Sg 53

Give the equation corresponding to this intuition and diagram for the action value,
¢=(8,a), in terms of the expected next reward, R;;1, and the expected next state value,
Ur(St+1), given that S;=s and A;=a. This equation should include an expectation but
not one conditioned on following the policy. Then give a second equation, writing out the
expected value explicitly in terms of p(s’,7]|s, a) defined by (3.2), such that no expected
value notation appears in the equation. O

3.6 Optimal Policies and Optimal Value Functions

Solving a reinforcement learning task means, roughly, finding a policy that achieves a lot
of reward over the long run. For finite MDPs, we can precisely define an optimal policy
in the following way. Value functions define a partial ordering over policies. A policy 7 is
defined to be better than or equal to a policy «’ if its expected return is greater than
or equal to that of 7’ for all states. In other words, 7 > 7" if and only if v, (s) > v/ (s)
for all s € §. There is always at least one policy that is better than or equal to all other
policies. This is an optimal policy. Although there may be more than one, we denote all
the optimal policies by m,. They share the same state-value function, called the optimal
state-value function, denoted v,, and defined as

vi(8) = mﬁmxvﬂ(s), (3.15)

for all s € 8.
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Optimal policies also share the same optimal action-value function, denoted ¢, and
defined as

¢«(s,a) = max ¢, (s, a), (3.16)

for all s € 8 and a € A(s). For the state—action pair (s,a), this function gives the
expected return for taking action a in state s and thereafter following an optimal policy.
Thus, we can write ¢, in terms of v, as follows:

q*(s, a) = ]E[Rt_H + ’}/U*(St_H) ‘ St:S,At:CL} . (317)

Example 3.7: Optimal Value Functions for Golf The lower part of Figure 3.3
shows the contours of a possible optimal action-value function g¢.(s,driver). These are
the values of each state if we first play a stroke with the driver and afterward select either
the driver or the putter, whichever is better. The driver enables us to hit the ball farther,
but with less accuracy. We can reach the hole in one shot using the driver only if we
are already very close; thus the —1 contour for ¢.(s,driver) covers only a small portion
of the green. If we have two strokes, however, then we can reach the hole from much
farther away, as shown by the —2 contour. In this case we don’t have to drive all the way
to within the small —1 contour, but only to anywhere on the green; from there we can
use the putter. The optimal action-value function gives the values after committing to a
particular first action, in this case, to the driver, but afterward using whichever actions
are best. The —3 contour is still farther out and includes the starting tee. From the tee,
the best sequence of actions is two drives and one putt, sinking the ball in three strokes. B

Because v, is the value function for a policy, it must satisfy the self-consistency
condition given by the Bellman equation for state values (3.14). Because it is the optimal
value function, however, v,’s consistency condition can be written in a special form
without reference to any specific policy. This is the Bellman equation for v,, or the
Bellman optimality equation. Intuitively, the Bellman optimality equation expresses the
fact that the value of a state under an optimal policy must equal the expected return for
the best action from that state:

vi(8) = arenﬁ()i) G, (8,0)

= maXEm[Gt | St:s,At:a]

= mgxIEm[RtH +vGiy1 | Si=s,Ar=d] (by (3.9))
= HleIE[Rt_H + ’YU*(St-H) | S;=s, Ay :a] (318)
= max Zp(s', rls,a)[r +yv.(s)]. (3.19)

The last two equations are two forms of the Bellman optimality equation for v,. The
Bellman optimality equation for g, is

qs(s,a) = ]E[Rtﬂ +fyme/qu*(St+1,a’) ‘ Sp=s,4; = a]

= Zp(s’, r|s,a) {r + v max q: (s, CL/)} . (3.20)

s’,r
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The backup diagrams in the figure below show graphically the spans of future states
and actions considered in the Bellman optimality equations for v, and ¢.. These are the
same as the backup diagrams for v, and ¢, presented earlier except that arcs have been
added at the agent’s choice points to represent that the maximum over that choice is
taken rather than the expected value given some policy. The backup diagram on the left
graphically represents the Bellman optimality equation (3.19) and the backup diagram
on the right graphically represents (3.20).

(U*) = (Q*) 5

o A A

OO0 OO OO ¢ o ¢ oa

Figure 3.4: Backup diagrams for v. and q.

For finite MDPs, the Bellman optimality equation for v, (3.19) has a unique solution.
The Bellman optimality equation is actually a system of equations, one for each state, so
if there are n states, then there are n equations in n unknowns. If the dynamics p of the
environment are known, then in principle one can solve this system of equations for v,
using any one of a variety of methods for solving systems of nonlinear equations. One
can solve a related set of equations for g,.

Once one has v,, it is relatively easy to determine an optimal policy. For each state
s, there will be one or more actions at which the maximum is obtained in the Bellman
optimality equation. Any policy that assigns nonzero probability only to these actions is
an optimal policy. You can think of this as a one-step search. If you have the optimal
value function, v,, then the actions that appear best after a one-step search will be optimal
actions. Another way of saying this is that any policy that is greedy with respect to the
optimal evaluation function v, is an optimal policy. The term greedy is used in computer
science to describe any search or decision procedure that selects alternatives based only
on local or immediate considerations, without considering the possibility that such a
selection may prevent future access to even better alternatives. Consequently, it describes
policies that select actions based only on their short-term consequences. The beauty of v,
is that if one uses it to evaluate the short-term consequences of actions—specifically, the
one-step consequences—then a greedy policy is actually optimal in the long-term sense in
which we are interested because v, already takes into account the reward consequences of
all possible future behavior. By means of v,, the optimal expected long-term return is
turned into a quantity that is locally and immediately available for each state. Hence, a
one-step-ahead search yields the long-term optimal actions.

Having g, makes choosing optimal actions even easier. With g¢,, the agent does not
even have to do a one-step-ahead search: for any state s, it can simply find any action
that maximizes ¢.(s,a). The action-value function effectively caches the results of all
one-step-ahead searches. It provides the optimal expected long-term return as a value
that is locally and immediately available for each state—action pair. Hence, at the cost of
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representing a function of state—action pairs, instead of just of states, the optimal action-
value function allows optimal actions to be selected without having to know anything
about possible successor states and their values, that is, without having to know anything
about the environment’s dynamics.

Example 3.8: Solving the Gridworld Suppose we solve the Bellman equation for v,
for the simple grid task introduced in Example 3.5 and shown again in Figure 3.5 (left).
Recall that state A is followed by a reward of +10 and transition to state A’, while state
B is followed by a reward of 4+5 and transition to state B’. Figure 3.5 (middle) shows the
optimal value function, and Figure 3.5 (right) shows the corresponding optimal policies.
Where there are multiple arrows in a cell, all of the corresponding actions are optimal.

16.0/17.8/16.0{14.4{13.0

Al B\ 22.0/24.4122.019.4{17.5 — <—I—> — <—I—> —
+5 19.8/22.0{19.8/17.8/16.0 t, Sl |«

+0| |B' 17.8/19.8/17.8/16.0{14.4 t, gl
[ P P P

LS g P P P

— |||

A" 14.4{16.0{14.4/13.0(11.7|
Gridworld 'U* ﬂ-*
Figure 3.5: Optimal solutions to the gridworld example. ]

Example 3.9: Bellman Optimality Equations for the Recycling Robot Using
(3.19), we can explicitly give the Bellman optimality equation for the recycling robot
example. To make things more compact, we abbreviate the states high and low, and the
actions search, wait, and recharge respectively by h, 1, s, w, and re. Because there are
only two states, the Bellman optimality equation consists of two equations. The equation
for v, (h) can be written as follows:

vu(b) = max{ p(alh,s)[r(h, s,h) + 0. ()] + p(L|h, s)[r(h,s,1) + v (1)], }
" p(b [, w)[r(h, w,h) +7v.(b)] +p(L|b,w)lr(h,w, 1) +50.(1)]
J+(

max{ a[rs + 'V'U*<h) +(1- Oé)[?“s + 'Yv*(l)]’ }
Lre + v« (0)] 4 0[ry 4 yv4(1)]

max{ Ts + ylav.(h) + (1 — a)v.(1)], }

Tw + ,YU*( )
Following the same procedure for v, (1) yields the equation
frs = 3(1 = B) +7[(1 = B)vw(h) + Fu.(1)],
v.(1) = max { ry +yv.(1),
Yvs (h)

For any choice of rg, my, «, 3, and v, with 0 < v < 1, 0 < a, 8 < 1, there is exactly
one pair of numbers, v,(h) and v, (1), that simultaneously satisfy these two nonlinear
equations. |
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Explicitly solving the Bellman optimality equation provides one route to finding an
optimal policy, and thus to solving the reinforcement learning problem. However, this
solution is rarely directly useful. It is akin to an exhaustive search, looking ahead at
all possibilities, computing their probabilities of occurrence and their desirabilities in
terms of expected rewards. This solution relies on at least three assumptions that are
rarely true in practice: (1) we accurately know the dynamics of the environment; (2)
we have enough computational resources to complete the computation of the solution;
and (3) the Markov property. For the kinds of tasks in which we are interested, one is
generally not able to implement this solution exactly because various combinations of
these assumptions are violated. For example, although the first and third assumptions
present no problems for the game of backgammon, the second is a major impediment.
Because the game has about 10?0 states, it would take thousands of years on today’s
fastest computers to solve the Bellman equation for v,, and the same is true for finding
g« In reinforcement learning one typically has to settle for approximate solutions.

Many different decision-making methods can be viewed as ways of approximately
solving the Bellman optimality equation. For example, heuristic search methods can be
viewed as expanding the right-hand side of (3.19) several times, up to some depth, forming
a “tree” of possibilities, and then using a heuristic evaluation function to approximate
v, at the “leaf” nodes. (Heuristic search methods such as A* are almost always based
on the episodic case.) The methods of dynamic programming can be related even more
closely to the Bellman optimality equation. Many reinforcement learning methods can
be clearly understood as approximately solving the Bellman optimality equation, using
actual experienced transitions in place of knowledge of the expected transitions. We
consider a variety of such methods in the following chapters.

Exercise 3.20 Draw or describe the optimal state-value function for the golf example. O

FExercise 3.21 Draw or describe the contours of the optimal action-value function for

putting, g (s, putter), for the golf example. |
Ezercise 3.22 Consider the continuing MDP shown on to the

right. The only decision to be made is that in the top state, left right

where two actions are available, left and right. The numbers

show the rewards that are received deterministically after 0 1 0 +2

each action. There are exactly two deterministic policies,
Tiefe and Tyighe. What policy is optimal if v = 0?7 If v = 0.97
If v =0.57 O

Exercise 3.23 Give the Bellman equation for g, for the recycling robot. |

Exercise 3.2 Figure 3.5 gives the optimal value of the best state of the gridworld as
24.4, to one decimal place. Use your knowledge of the optimal policy and (3.8) to express
this value symbolically, and then to compute it to three decimal places. O

Ezercise 3.25 Give an equation for v, in terms of g,. a

Ezercise 3.26 Give an equation for ¢, in terms of v, and the four-argument p. O
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Ezercise 8.27 Give an equation for m, in terms of g,. O
Exercise 3.28 Give an equation for 7, in terms of v, and the four-argument p. O

FEzercise 8.29 Rewrite the four Bellman equations for the four value functions (v, vs, ¢,
and ¢,) in terms of the three argument function p (3.4) and the two-argument function r
(3.5). O

3.7 Optimality and Approximation

We have defined optimal value functions and optimal policies. Clearly, an agent that
learns an optimal policy has done very well, but in practice this rarely happens. For
the kinds of tasks in which we are interested, optimal policies can be generated only
with extreme computational cost. A well-defined notion of optimality organizes the
approach to learning we describe in this book and provides a way to understand the
theoretical properties of various learning algorithms, but it is an ideal that agents can
only approximate to varying degrees. As we discussed above, even if we have a complete
and accurate model of the environment’s dynamics, it is usually not possible to simply
compute an optimal policy by solving the Bellman optimality equation. For example,
board games such as chess are a tiny fraction of human experience, yet large, custom-
designed computers still cannot compute the optimal moves. A critical aspect of the
problem facing the agent is always the computational power available to it, in particular,
the amount of computation it can perform in a single time step.

The memory available is also an important constraint. A large amount of memory
is often required to build up approximations of value functions, policies, and models.
In tasks with small, finite state sets, it is possible to form these approximations using
arrays or tables with one entry for each state (or state—action pair). This we call the
tabular case, and the corresponding methods we call tabular methods. In many cases
of practical interest, however, there are far more states than could possibly be entries
in a table. In these cases the functions must be approximated, using some sort of more
compact parameterized function representation.

Our framing of the reinforcement learning problem forces us to settle for approxi-
mations. However, it also presents us with some unique opportunities for achieving
useful approximations. For example, in approximating optimal behavior, there may be
many states that the agent faces with such a low probability that selecting suboptimal
actions for them has little impact on the amount of reward the agent receives. Tesauro’s
backgammon player, for example, plays with exceptional skill even though it might make
very bad decisions on board configurations that never occur in games against experts. In
fact, it is possible that TD-Gammon makes bad decisions for a large fraction of the game’s
state set. The online nature of reinforcement learning makes it possible to approximate
optimal policies in ways that put more effort into learning to make good decisions for
frequently encountered states, at the expense of less effort for infrequently encountered
states. This is one key property that distinguishes reinforcement learning from other
approaches to approximately solving MDPs.
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3.8 Summary

Let us summarize the elements of the reinforcement learning problem that we have
presented in this chapter. Reinforcement learning is about learning from interaction
how to behave in order to achieve a goal. The reinforcement learning agent and its
environment interact over a sequence of discrete time steps. The specification of their
interface defines a particular task: the actions are the choices made by the agent; the
states are the basis for making the choices; and the rewards are the basis for evaluating
the choices. Everything inside the agent is completely known and controllable by the
agent; everything outside is incompletely controllable but may or may not be completely
known. A policy is a stochastic rule by which the agent selects actions as a function of
states. The agent’s objective is to maximize the amount of reward it receives over time.

When the reinforcement learning setup described above is formulated with well defined
transition probabilities it constitutes a Markov decision process (MDP). A finite MDP is
an MDP with finite state, action, and (as we formulate it here) reward sets. Much of the
current theory of reinforcement learning is restricted to finite MDPs, but the methods
and ideas apply more generally.

The return is the function of future rewards that the agent seeks to maximize (in
expected value). It has several different definitions depending upon the nature of the
task and whether one wishes to discount delayed reward. The undiscounted formulation
is appropriate for episodic tasks, in which the agent—environment interaction breaks
naturally into episodes; the discounted formulation is appropriate for continuing tasks, in
which the interaction does not naturally break into episodes but continues without limit.
We try to define the returns for the two kinds of tasks such that one set of equations can
apply to both the episodic and continuing cases.

A policy’s value functions assign to each state, or state—action pair, the expected return
from that state, or state—action pair, given that the agent uses the policy. The optimal
value functions assign to each state, or state—action pair, the largest expected return
achievable by any policy. A policy whose value functions are optimal is an optimal policy.
Whereas the optimal value functions for states and state—action pairs are unique for a
given MDP, there can be many optimal policies. Any policy that is greedy with respect to
the optimal value functions must be an optimal policy. The Bellman optimality equations
are special consistency conditions that the optimal value functions must satisfy and that
can, in principle, be solved for the optimal value functions, from which an optimal policy
can be determined with relative ease.

A reinforcement learning problem can be posed in a variety of different ways depending
on assumptions about the level of knowledge initially available to the agent. In problems
of complete knowledge, the agent has a complete and accurate model of the environment’s
dynamics. If the environment is an MDP, then such a model consists of the complete four-
argument dynamics function p (3.2). In problems of incomplete knowledge, a complete
and perfect model of the environment is not available.

Even if the agent has a complete and accurate environment model, the agent is
typically unable to perform enough computation per time step to fully use it. The
memory available is also an important constraint. Memory may be required to build
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up accurate approximations of value functions, policies, and models. In most cases of
practical interest there are far more states than could possibly be entries in a table, and
approximations must be made.

A well-defined notion of optimality organizes the approach to learning we describe in
this book and provides a way to understand the theoretical properties of various learning
algorithms, but it is an ideal that reinforcement learning agents can only approximate
to varying degrees. In reinforcement learning we are very much concerned with cases in
which optimal solutions cannot be found but must be approximated in some way.

Bibliographical and Historical Remarks

The reinforcement learning problem is deeply indebted to the idea of Markov decision
processes (MDPs) from the field of optimal control. These historical influences and other
major influences from psychology are described in the brief history given in Chapter 1.
Reinforcement learning adds to MDPs a focus on approximation and incomplete infor-
mation for realistically large problems. MDPs and the reinforcement learning problem
are only weakly linked to traditional learning and decision-making problems in artificial
intelligence. However, artificial intelligence is now vigorously exploring MDP formulations
for planning and decision making from a variety of perspectives. MDPs are more general
than previous formulations used in artificial intelligence in that they permit more general
kinds of goals and uncertainty.

The theory of MDPs is treated by, for example, Bertsekas (2005), White (1969), Whittle
(1982, 1983), and Puterman (1994). A particularly compact treatment of the finite case
is given by Ross (1983). MDPs are also studied under the heading of stochastic optimal
control, where adaptive optimal control methods are most closely related to reinforcement
learning (e.g., Kumar, 1985; Kumar and Varaiya, 1986).

The theory of MDPs evolved from efforts to understand the problem of making sequences
of decisions under uncertainty, where each decision can depend on the previous decisions
and their outcomes. It is sometimes called the theory of multistage decision processes,
or sequential decision processes, and has roots in the statistical literature on sequential
sampling beginning with the papers by Thompson (1933, 1934) and Robbins (1952) that
we cited in Chapter 2 in connection with bandit problems (which are prototypical MDPs
if formulated as multiple-situation problems).

The earliest instance of which we are aware in which reinforcement learning was
discussed using the MDP formalism is Andreae’s (1969b) description of a unified view of
learning machines. Witten and Corbin (1973) experimented with a reinforcement learning
system later analyzed by Witten (1977, 1976a) using the MDP formalism. Although
he did not explicitly mention MDPs, Werbos (1977) suggested approximate solution
methods for stochastic optimal control problems that are related to modern reinforcement
learning methods (see also Werbos, 1982, 1987, 1988, 1989, 1992). Although Werbos’s
ideas were not widely recognized at the time, they were prescient in emphasizing the
importance of approximately solving optimal control problems in a variety of domains,
including artificial intelligence. The most influential integration of reinforcement learning
and MDPs is due to Watkins (1989).



70

Chapter 3: Finite Markov Decision Processes

3.1

3.2

3.3-4

3.5-6

Our characterization of the dynamics of an MDP in terms of p(s’,r|s,a) is
slightly unusual. It is more common in the MDP literature to describe the
dynamics in terms of the state transition probabilities p(s’|s, a) and expected
next rewards r(s,a). In reinforcement learning, however, we more often have
to refer to individual actual or sample rewards (rather than just their expected
values). Our notation also makes it plainer that S; and R; are in general jointly
determined, and thus must have the same time index. In teaching reinforcement
learning, we have found our notation to be more straightforward conceptually
and easier to understand.

For a good intuitive discussion of the system-theoretic concept of state, see
Minsky (1967).

The bioreactor example is based on the work of Ungar (1990) and Miller and
Williams (1992). The recycling robot example was inspired by the can-collecting
robot built by Jonathan Connell (1989). Kober and Peters (2012) present a
collection of robotics applications of reinforcement learning.

The reward hypothesis was suggested by Michael Littman (personal communica-
tion).

The terminology of episodic and continuing tasks is different from that usually
used in the MDP literature. In that literature it is common to distinguish
three types of tasks: (1) finite-horizon tasks, in which interaction terminates
after a particular fized number of time steps; (2) indefinite-horizon tasks, in
which interaction can last arbitrarily long but must eventually terminate; and
(3) infinite-horizon tasks, in which interaction does not terminate. Our episodic
and continuing tasks are similar to indefinite-horizon and infinite-horizon tasks,
respectively, but we prefer to emphasize the difference in the nature of the
interaction. This difference seems more fundamental than the difference in the
objective functions emphasized by the usual terms. Often episodic tasks use
an indefinite-horizon objective function and continuing tasks an infinite-horizon
objective function, but we see this as a common coincidence rather than a
fundamental difference.

The pole-balancing example is from Michie and Chambers (1968) and Barto,
Sutton, and Anderson (1983).

Assigning value on the basis of what is good or bad in the long run has ancient
roots. In control theory, mapping states to numerical values representing the
long-term consequences of control decisions is a key part of optimal control theory,
which was developed in the 1950s by extending nineteenth century state-function
theories of classical mechanics (see, e.g., Schultz and Melsa, 1967). In describing
how a computer could be programmed to play chess, Shannon (1950) suggested
using an evaluation function that took into account the long-term advantages
and disadvantages of chess positions.

Watkins’s (1989) Q-learning algorithm for estimating g, (Chapter 6) made action-
value functions an important part of reinforcement learning, and consequently
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these functions are often called “Q-functions.” But the idea of an action-value
function is much older than this. Shannon (1950) suggested that a function
h(P, M) could be used by a chess-playing program to decide whether a move M
in position P is worth exploring. Michie’s (1961, 1963) MENACE system and
Michie and Chambers’s (1968) BOXES system can be understood as estimating
action-value functions. In classical physics, Hamilton’s principal function is
an action-value function; Newtonian dynamics are greedy with respect to this
function (e.g., Goldstein, 1957). Action-value functions also played a central role
in Denardo’s (1967) theoretical treatment of dynamic programming in terms of
contraction mappings.

The Bellman optimality equation (for v,) was popularized by Richard Bellman
(1957a), who called it the “basic functional equation.” The counterpart of the
Bellman optimality equation for continuous time and state problems is known
as the Hamilton—Jacobi-Bellman equation (or often just the Hamilton—Jacobi
equation), indicating its roots in classical physics (e.g., Schultz and Melsa, 1967).

The golf example was suggested by Chris Watkins.






Chapter 4

Dynamic Programming

The term dynamic programming (DP) refers to a collection of algorithms that can be
used to compute optimal policies given a perfect model of the environment as a Markov
decision process (MDP). Classical DP algorithms are of limited utility in reinforcement
learning both because of their assumption of a perfect model and because of their great
computational expense, but they are still important theoretically. DP provides an essential
foundation for the understanding of the methods presented in the rest of this book. In
fact, all of these methods can be viewed as attempts to achieve much the same effect as
DP, only with less computation and without assuming a perfect model of the environment.

We usually assume that the environment is a finite MDP. That is, we assume that its
state, action, and reward sets, 8, A, and R, are finite, and that its dynamics are given by a
set of probabilities p(s’,7|s,a), for all s € 8, a € A(s), r € R, and s’ € 8t (8T is 8 plus a
terminal state if the problem is episodic). Although DP ideas can be applied to problems
with continuous state and action spaces, exact solutions are possible only in special cases.
A common way of obtaining approximate solutions for tasks with continuous states and
actions is to quantize the state and action spaces and then apply finite-state DP methods.
The methods we explore in Chapter 9 are applicable to continuous problems and are a
significant extension of that approach.

The key idea of DP, and of reinforcement learning generally, is the use of value functions
to organize and structure the search for good policies. In this chapter we show how DP
can be used to compute the value functions defined in Chapter 3. As discussed there, we
can easily obtain optimal policies once we have found the optimal value functions, v, or
g«, which satisfy the Bellman optimality equations:

vi(8) = mgxIE[RtH + Y0 (St11) | St=s, Ar=al]

= mapr(s',Ms,a) [r—l—wv*(s’)}, or (4.1)
¢«(s,a) = E[Rt-H + vy max ¢.(Sg41,a") ‘ StZS;At:a}
=3 p( rls,0) [+ ymaxa (s a)|, (4.2)
a/

)
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for all s € 8, a € A(s), and s’ € 8T. As we shall see, DP algorithms are obtained by
turning Bellman equations such as these into assignments, that is, into update rules for
improving approximations of the desired value functions.

4.1 Policy Evaluation (Prediction)

First we consider how to compute the state-value function v, for an arbitrary policy .
This is called policy evaluation in the DP literature. We also refer to it as the prediction
problem. Recall from Chapter 3 that, for all s € 8,

vr(s) =EL[Gt | Sp=5s]

= Eﬂ[RtJ'_l + G4 ‘ StZS] (from (39))
= Ex[Riy1 + 02 (Sev1) | Se=5] (4.3)
= > lals) > p(s' rls.a) |r + ya(s)] (4.4)

where 7(als) is the probability of taking action a in state s under policy =, and the
expectations are subscripted by 7 to indicate that they are conditional on 7 being followed.
The existence and uniqueness of v, are guaranteed as long as either v < 1 or eventual
termination is guaranteed from all states under the policy 7.

If the environment’s dynamics are completely known, then (4.4) is a system of ||
simultaneous linear equations in |8| unknowns (the v, (s), s € 8). In principle, its solution
is a straightforward, if tedious, computation. For our purposes, iterative solution methods
are most suitable. Consider a sequence of approximate value functions vg, v1, ve, .. ., each
mapping 8T to R (the real numbers). The initial approximation, vy, is chosen arbitrarily
(except that the terminal state, if any, must be given value 0), and each successive
approximation is obtained by using the Bellman equation for v, (4.4) as an update rule:

vki1(s) = Ex[Ripr + yop(Se) | Se=s]
= Z 7(als) Zp(s’, r|s,a) {T + Yok (s’)] , (4.5)

for all s € 8. Clearly, vy = v, is a fixed point for this update rule because the Bellman
equation for v, assures us of equality in this case. Indeed, the sequence {vy} can be
shown in general to converge to v, as k — oo under the same conditions that guarantee
the existence of v,. This algorithm is called iterative policy evaluation.

To produce each successive approximation, v, from vy, iterative policy evaluation
applies the same operation to each state s: it replaces the old value of s with a new value
obtained from the old values of the successor states of s, and the expected immediate
rewards, along all the one-step transitions possible under the policy being evaluated. We
call this kind of operation an expected update. Each iteration of iterative policy evalu-
ation updates the value of every state once to produce the new approximate value function
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vgt+1- There are several different kinds of expected updates, depending on whether a
state (as here) or a state—action pair is being updated, and depending on the precise way
the estimated values of the successor states are combined. All the updates done in DP
algorithms are called expected updates because they are based on an expectation over all
possible next states rather than on a sample next state. The nature of an update can
be expressed in an equation, as above, or in a backup diagram like those introduced in
Chapter 3. For example, the backup diagram corresponding to the expected update used
in iterative policy evaluation is shown on page 59.

To write a sequential computer program to implement iterative policy evaluation as
given by (4.5) you would have to use two arrays, one for the old values, vi(s), and one
for the new values, vg11(s). With two arrays, the new values can be computed one by
one from the old values without the old values being changed. Of course it is easier to
use one array and update the values “in place,” that is, with each new value immediately
overwriting the old one. Then, depending on the order in which the states are updated,
sometimes new values are used instead of old ones on the right-hand side of (4.5). This
in-place algorithm also converges to v,; in fact, it usually converges faster than the
two-array version, as you might expect, because it uses new data as soon as they are
available. We think of the updates as being done in a sweep through the state space. For
the in-place algorithm, the order in which states have their values updated during the
sweep has a significant influence on the rate of convergence. We usually have the in-place
version in mind when we think of DP algorithms.

A complete in-place version of iterative policy evaluation is shown in pseudocode in
the box below. Note how it handles termination. Formally, iterative policy evaluation
converges only in the limit, but in practice it must be halted short of this. The pseudocode
tests the quantity maxses |vg+1(s)—vk(s)| after each sweep and stops when it is sufficiently
small.

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V (s), for all s € 8, arbitrarily except that V (terminal) = 0

Loop:
A+0
Loop for each s € 8:
v V(s)
V(s) & X, 7lals) Sy 5,715, 0) [ +4V()]
A — max(A, v — V(s)])
until A < 0
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Example 4.1 Consider the 4 x4 gridworld shown below.

4 |5 |6 |7 Ry = -1
on all transitions

8 9 10 |11

actions
12 13 [14

The nonterminal states are § = {1,2,...,14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent off the grid in fact leave
the state unchanged. Thus, for instance, p(6,—1|5,right) =1, p(7,—1|7,right) = 1,
and p(10,7|5,right) = 0 for all » € R. This is an undiscounted, episodic task. The
reward is —1 on all transitions until the terminal state is reached. The terminal state is
shaded in the figure (although it is shown in two places, it is formally one state). The
expected reward function is thus r(s, a, s’) = —1 for all states s, s’ and actions a. Suppose
the agent follows the equiprobable random policy (all actions equally likely). The left side
of Figure 4.1 shows the sequence of value functions {v;} computed by iterative policy
evaluation. The final estimate is in fact v, which in this case gives for each state the
negation of the expected number of steps from that state until termination. [ |

Ezercise 4.1 In Example 4.1, if 7 is the equiprobable random policy, what is ¢, (11, down)?
What is ¢ (7,down)? O

Ezercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states 12, 13, 14,
and 15, respectively. Assume that the transitions from the original states are unchanged.
What, then, is v, (15) for the equiprobable random policy? Now suppose the dynamics of
state 13 are also changed, such that action down from state 13 takes the agent to the new
state 15. What is v, (15) for the equiprobable random policy in this case? ]

Ezercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the action-
value function ¢, and its successive approximation by a sequence of functions qq, g1, g2, - - .7
O

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies.
Suppose we have determined the value function v, for an arbitrary deterministic policy
7. For some state s we would like to know whether or not we should change the policy
to deterministically choose an action a # 7(s). We know how good it is to follow the
current policy from s—that is v, (s)—but would it be better or worse to change to the
new policy? One way to answer this question is to consider selecting a in s and thereafter
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Vg for the greedy policy
random policy w.r.t. vk
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Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.
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following the existing policy, . The value of this way of behaving is
qTr(S7 a) = E[Rt—i-l + ’YU.,T(StJ,_l) | Si=s, Ay :a] (46)
= Zp(s/, r|s,a) [r + 'yvﬂ(s’)} .
s'r

The key criterion is whether this is greater than or less than v, (s). If it is greater—that
is, if it is better to select a once in s and thereafter follow 7 than it would be to follow
7 all the time—then one would expect it to be better still to select a every time s is
encountered, and that the new policy would in fact be a better one overall.

That this is true is a special case of a general result called the policy improvement
theorem. Let m and 7’ be any pair of deterministic policies such that, for all s € 8,

Gr (8,7 (8)) > vr(s). (4.7)

Then the policy 7’ must be as good as, or better than, . That is, it must obtain greater
or equal expected return from all states s € 8:

v (8) = vr (). (4.8)

Moreover, if there is strict inequality of (4.7) at any state, then there must be strict
inequality of (4.8) at that state. This result applies in particular to the two policies
that we considered in the previous paragraph, an original deterministic policy, 7, and a
changed policy, 7', that is identical to m except that 7'(s) = a # 7(s). Obviously, (4.7)
holds at all states other than s. Thus, if ¢.(s,a) > v,(s), then the changed policy is
indeed better than 7.

The idea behind the proof of the policy improvement theorem is easy to understand.
Starting from (4.7), we keep expanding the ¢, side with (4.6) and reapplying (4.7) until
we get v ($):

v (8) < gr(s,7(s))

=E[Rit1 + y0r(Se41) | Se=5, Ay =7'(s)] (by (4.6))
=Er[Riv1 +y0r(Se41) | Se=54]
SEw[Rit1 + 7Gx (Se41, 7 (Si41)) | Se=3] (by (4.7))

=Ex[Riv1 + VEr[Riy2 + y0r (Sta2)Se41, Arr1 =7 (Seq1)] | Sp =]
=E. [Rt+1 + YRiyo + 'YQUW(St+2) ’ St:s}
< Ex[Rip1 + YRz + 7V Rigs + 7V vr(Siys) | Se=s]

<E. [Rt+1 + 'YRt+2 + ’YQRt+3 + ’73Rt+4 + - | St:S]

= v (8).

So far we have seen how, given a policy and its value function, we can easily evaluate
a change in the policy at a single state to a particular action. It is a natural extension
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to consider changes at all states and to all possible actions, selecting at each state the
action that appears best according to ¢ (s,a). In other words, to consider the new greedy
policy, 7/, given by

7'(s) = argmaxgq.(s,a)

= argmaxE[Riy1 + Yvr(Ses1) | St=s,Ar=aq] (4.9)
= argmax s'rls,a)|r +yvg(s)],
gmasx ) p(s 7 ) [+ 70s(s)]

where argmax, denotes the value of a at which the expression that follows is maximized
(with ties broken arbitrarily). The greedy policy takes the action that looks best in the
short term—after one step of lookahead—according to v,. By construction, the greedy
policy meets the conditions of the policy improvement theorem (4.7), so we know that it
is as good as, or better than, the original policy. The process of making a new policy that
improves on an original policy, by making it greedy with respect to the value function of
the original policy, is called policy improvement.

Suppose the new greedy policy, 7/, is as good as, but not better than, the old policy 7.
Then v, = v, and from (4.9) it follows that for all s € 8:

v (s) = mL?X]E[RtH + Y0 (Sey1) | Se=s5, Ar=a]

_ / (o
= mgxep(s ,r\s,a){r+’yvﬁ (s )}
s',r

But this is the same as the Bellman optimality equation (4.1), and therefore, v, must be
V4, and both 7 and 7’ must be optimal policies. Policy improvement thus must give us a
strictly better policy except when the original policy is already optimal.

So far in this section we have considered the special case of deterministic policies.
In the general case, a stochastic policy 7 specifies probabilities, 7(als), for taking each
action, a, in each state, s. We will not go through the details, but in fact all the ideas of
this section extend easily to stochastic policies. In particular, the policy improvement
theorem carries through as stated for the stochastic case. In addition, if there are ties in
policy improvement steps such as (4.9)—that is, if there are several actions at which the
maximum is achieved—then in the stochastic case we need not select a single action from
among them. Instead, each maximizing action can be given a portion of the probability
of being selected in the new greedy policy. Any apportioning scheme is allowed as long
as all submaximal actions are given zero probability.

The last row of Figure 4.1 shows an example of policy improvement for stochastic
policies. Here the original policy, m, is the equiprobable random policy, and the new
policy, 7/, is greedy with respect to v,. The value function v, is shown in the bottom-left
diagram and the set of possible 7’ is shown in the bottom-right diagram. The states
with multiple arrows in the 7’ diagram are those in which several actions achieve the
maximum in (4.9); any apportionment of probability among these actions is permitted.
The value function of any such policy, v,/ (s), can be seen by inspection to be either —1,
—2, or —3 at all states, s € 8§, whereas v.(s) is at most —14. Thus, v, (s) > v (s), for all
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s € 8, illustrating policy improvement. Although in this case the new policy 7’ happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, 7, has been improved using v, to yield a better policy, 7/, we can then
compute v, and improve it again to yield an even better /. We can thus obtain a
sequence of monotonically improving policies and value functions:

E I E I E I E
O — Uy —> T —> Upy —> Mg —> ++ — Ty — Uy,

where — denotes a policy evaluation and — denotes a policy improvement. Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

1. Initialization
V(s) € R and n(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Loop:
A+0
Loop for each s € §:
v+ V(s)
V(s) 4= Sy, p(s 7], 7(8)) [r + 4V (5")]
A +— max(A, v — V(s)])
until A < @ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € §:
old-action + 7(s)
m(s) « argmax, >, . p(s', (s, a) [r+V(s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V = v, and 7 = ,; else go to 2
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Example 4.2: Jack’s Car Rental Jack manages two locations for a nationwide car
rental company. Each day, some number of customers arrive at each location to rent cars.
If Jack has a car available, he rents it out and is credited $10 by the national company.
If he is out of cars at that location, then the business is lost. Cars become available for
renting the day after they are returned. To help ensure that cars are available where
they are needed, Jack can move them between the two locations overnight, at a cost of
$2 per car moved. We assume that the number of cars requested and returned at each
location are Poisson random variables, meaning that the probability that the number is
n is %e"\, where ) is the expected number. Suppose A is 3 and 4 for rental requests at
the first and second locations and 3 and 2 for returns. To simplify the problem slightly,
we assume that there can be no more than 20 cars at each location (any additional cars
are returned to the nationwide company, and thus disappear from the problem) and a
maximum of five cars can be moved from one location to the other in one night. We take
the discount rate to be v = 0.9 and formulate this as a continuing finite MDP, where
the time steps are days, the state is the number of cars at each location at the end of
the day, and the actions are the net numbers of cars moved between the two locations
overnight. Figure 4.2 shows the sequence of policies found by policy iteration starting
from the policy that never moves any cars.

0

20

#Cars at first location

o =3[ &
0 .20
#Cars at second location

Figure 4.2: The sequence of policies found by policy iteration on Jack’s car rental problem,
and the final state-value function. The first five diagrams show, for each number of cars at
each location at the end of the day, the number of cars to be moved from the first location to
the second (negative numbers indicate transfers from the second location to the first). Each
successive policy is a strict improvement over the previous policy, and the last policy is optimal. B
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Policy iteration often converges in surprisingly few iterations, as the example of Jack’s
car rental illustrates, and as is also illustrated by the example in Figure 4.1. The bottom-
left diagram of Figure 4.1 shows the value function for the equiprobable random policy,
and the bottom-right diagram shows a greedy policy for this value function. The policy
improvement theorem assures us that these policies are better than the original random
policy. In this case, however, these policies are not just better, but optimal, proceeding
to the terminal states in the minimum number of steps. In this example, policy iteration
would find the optimal policy after just one iteration.

Ezercise 4.4 The policy iteration algorithm on page 80 has a subtle bug in that it may
never terminate if the policy continually switches between two or more policies that are
equally good. This is ok for pedagogy, but not for actual use. Modify the pseudocode so
that convergence is guaranteed. (]

Ezxercise 4.5 How would policy iteration be defined for action values? Give a complete
algorithm for computing g., analogous to that on page 80 for computing v,.. Please pay
special attention to this exercise, because the ideas involved will be used throughout the
rest of the book. |

Exercise 4.6 Suppose you are restricted to considering only policies that are e-soft,
meaning that the probability of selecting each action in each state, s, is at least £/|A(s)|.
Describe qualitatively the changes that would be required in each of the steps 3, 2, and 1,
in that order, of the policy iteration algorithm for v, on page 80. O

FEzercise 4.7 (programming) Write a program for policy iteration and re-solve Jack’s car
rental problem with the following changes. One of Jack’s employees at the first location
rides a bus home each night and lives near the second location. She is happy to shuttle
one car to the second location for free. Each additional car still costs $2, as do all cars
moved in the other direction. In addition, Jack has limited parking space at each location.
If more than 10 cars are kept overnight at a location (after any moving of cars), then an
additional cost of $4 must be incurred to use a second parking lot (independent of how
many cars are kept there). These sorts of nonlinearities and arbitrary dynamics often
occur in real problems and cannot easily be handled by optimization methods other than
dynamic programming. To check your program, first replicate the results given for the
original problem. (|

4.4 Value Iteration

One drawback to policy iteration is that each of its iterations involves policy evaluation,
which may itself be a protracted iterative computation requiring multiple sweeps through
the state set. If policy evaluation is done iteratively, then convergence exactly to v,
occurs only in the limit. Must we wait for exact convergence, or can we stop short of
that? The example in Figure 4.1 certainly suggests that it may be possible to truncate
policy evaluation. In that example, policy evaluation iterations beyond the first three
have no effect on the corresponding greedy policy.

In fact, the policy evaluation step of policy iteration can be truncated in several ways
without losing the convergence guarantees of policy iteration. One important special
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case is when policy evaluation is stopped after just one sweep (one update of each state).
This algorithm is called value iteration. It can be written as a particularly simple update
operation that combines the policy improvement and truncated policy evaluation steps:

vet1(s) = méiXE[RtH + Yk (St1) | Se=s, Ar=d]
= mapr(s',r|s,a) {r —|—’yvk(s’)], (4.10)
s'r

for all s € 8. For arbitrary vg, the sequence {vy} can be shown to converge to v, under
the same conditions that guarantee the existence of v,.

Another way of understanding value iteration is by reference to the Bellman optimality
equation (4.1). Note that value iteration is obtained simply by turning the Bellman
optimality equation into an update rule. Also note how the value iteration update is
identical to the policy evaluation update (4.5) except that it requires the maximum to be
taken over all actions. Another way of seeing this close relationship is to compare the
backup diagrams for these algorithms on page 59 (policy evaluation) and on the left of
Figure 3.4 (value iteration). These two are the natural backup operations for computing
vy and vy.

Finally, let us consider how value iteration terminates. Like policy evaluation, value
iteration formally requires an infinite number of iterations to converge exactly to v.. In
practice, we stop once the value function changes by only a small amount in a sweep.
The box below shows a complete algorithm with this kind of termination condition.

Value Iteration, for estimating 7 ~ 7,

Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:

| A+0

| Loop for each s € 8:

| v V(s)

| V(s) ¢ max, > . p(s',7]s,0a) [r+~V(s)]
| A+ max(A, v — V(s)])

until A < 6

Output a deterministic policy, m & ,, such that
7m(s) = argmax, Zs,mp(s’, r|s,a) [r + 'yV(s’)]

Value iteration effectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep. In general,
the entire class of truncated policy iteration algorithms can be thought of as sequences
of sweeps, some of which use policy evaluation updates and some of which use value
iteration updates. Because the max operation in (4.10) is the only difference between
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these updates, this just means that the max operation is added to some sweeps of policy
evaluation. All of these algorithms converge to an optimal policy for discounted finite
MDPs.

Example 4.3: Gambler’s Problem A gambler has the opportunity to make bets on
the outcomes of a sequence of coin flips. If the coin comes up heads, he wins as many
dollars as he has staked on that flip; if it is tails, he loses his stake. The game ends
when the gambler wins by reaching his goal of $100, or loses by running out of money.
On each flip, the gambler must decide what portion of his capital to stake, in integer
numbers of dollars. This problem can be formulated as an undiscounted, episodic, finite
MDP. The state is the gambler’s capi-

tal, s € {1,2,...,99} and the actions 14
are stakes, a € {0,1,...,min(s, 100 — Final value ‘
s)}. The reward is zero on all transi- %7 function
tions except those on which the gam-

. .o Value
bler reaches his goal, when it is +1. estimates
The state-value function then gives 044
the probability of winning from each
state. A policy is a mapping from 1
levels of capital to stakes. The opti- e e S ‘
mal policy maximizes the probability ! » 0 7 9
of reaching the goal. Let pj denote Capital
the probability of the coin coming up
heads. If p; is known, then the en- 50
tire problem is known and it can be i 40

. . . Final
solved, for instance, by value iteration.  pjicy
Figure 4.3 shows the change in the  (stake) 2°
value function over successive sweeps |
of value iteration, and the final policy i 2 50 75 99
found, for the case of p = 0.4. This Capital
policy is optimal, but not unique. In
fact, there is a whole family of opti-
mal policies, all corresponding to ties
for the argmax action selection with
respect to the optimal value function.
Can you guess what the entire family
looks like? [ |

,’/ |
|
AT ‘ ‘\<7fsweep1

e —— sweep 2

Figure 4.3: The solution to the gambler’s problem
for pr, = 0.4. The upper graph shows the value func-
tion found by successive sweeps of value iteration. The
lower graph shows the final policy.

Ezercise 4.8 Why does the optimal policy for the gambler’s problem have such a curious
form? In particular, for capital of 50 it bets it all on one flip, but for capital of 51 it does
not. Why is this a good policy? |

Ezercise 4.9 (programming) Implement value iteration for the gambler’s problem and
solve it for pp = 0.25 and p, = 0.55. In programming, you may find it convenient to
introduce two dummy states corresponding to termination with capital of 0 and 100,
giving them values of 0 and 1 respectively. Show your results graphically, as in Figure 4.3.
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Are your results stable as § — 07 ]

Ezercise 4.10 What is the analog of the value iteration update (4.10) for action values,
qk+1 (37 CL)? U

4.5 Asynchronous Dynamic Programming

A major drawback to the DP methods that we have discussed so far is that they involve
operations over the entire state set of the MDP, that is, they require sweeps of the state
set. If the state set is very large, then even a single sweep can be prohibitively expensive.
For example, the game of backgammon has over 10?° states. Even if we could perform
the value iteration update on a million states per second, it would take over a thousand
years to complete a single sweep.

Asynchronous DP algorithms are in-place iterative DP algorithms that are not organized
in terms of systematic sweeps of the state set. These algorithms update the values of
states in any order whatsoever, using whatever values of other states happen to be
available. The values of some states may be updated several times before the values of
others are updated once. To converge correctly, however, an asynchronous algorithm
must continue to update the values of all the states: it can’t ignore any state after some
point in the computation. Asynchronous DP algorithms allow great flexibility in selecting
states to update.

For example, one version of asynchronous value iteration updates the value, in place, of
only one state, si, on each step, k, using the value iteration update (4.10). If 0 <y < 1,
asymptotic convergence to v, is guaranteed given only that all states occur in the
sequence {s} an infinite number of times (the sequence could even be stochastic). (In
the undiscounted episodic case, it is possible that there are some orderings of updates
that do not result in convergence, but it is relatively easy to avoid these.) Similarly, it
is possible to intermix policy evaluation and value iteration updates to produce a kind
of asynchronous truncated policy iteration. Although the details of this and other more
unusual DP algorithms are beyond the scope of this book, it is clear that a few different
updates form building blocks that can be used flexibly in a wide variety of sweepless DP
algorithms.

Of course, avoiding sweeps does not necessarily mean that we can get away with less
computation. It just means that an algorithm does not need to get locked into any
hopelessly long sweep before it can make progress improving a policy. We can try to
take advantage of this flexibility by selecting the states to which we apply updates so
as to improve the algorithm’s rate of progress. We can try to order the updates to let
value information propagate from state to state in an efficient way. Some states may not
need their values updated as often as others. We might even try to skip updating some
states entirely if they are not relevant to optimal behavior. Some ideas for doing this are
discussed in Chapter 8.

Asynchronous algorithms also make it easier to intermix computation with real-time
interaction. To solve a given MDP, we can run an iterative DP algorithm at the same
time that an agent is actually experiencing the MDP. The agent’s experience can be used
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to determine the states to which the DP algorithm applies its updates. At the same time,
the latest value and policy information from the DP algorithm can guide the agent’s
decision making. For example, we can apply updates to states as the agent visits them.
This makes it possible to focus the DP algorithm’s updates onto parts of the state set that
are most relevant to the agent. This kind of focusing is a repeated theme in reinforcement
learning.

4.6 Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting processes, one making the value
function consistent with the current policy (policy evaluation), and the other making
the policy greedy with respect to the current value function (policy improvement). In
policy iteration, these two processes alternate, each completing before the other begins,
but this is not really necessary. In value iteration, for example, only a single iteration of
policy evaluation is performed in between each policy improvement. In asynchronous DP
methods, the evaluation and improvement processes are interleaved at an even finer grain.
In some cases a single state is updated in one process before returning to the other. As
long as both processes continue to update all states, the ultimate result is typically the
same—convergence to the optimal value function and an optimal policy.

We use the term generalized policy iteration (GPI) to re-
fer to the general idea of letting policy-evaluation and policy-
improvement processes interact, independent of the granularity
and other details of the two processes. Almost all reinforcement
learning methods are well described as GPIL. That is, all have 174
identifiable policies and value functions, with the policy always

evaluation

Vs g

being improved with respect to the value function and the value 7~ greedy(V)
function always being driven toward the value function for the improvement
policy, as suggested by the diagram to the right. If both the .
evaluation process and the improvement process stabilize, that .
is, no longer produce changes, then the value function and policy .
must be optimal. The value function stabilizes only when it .

is consistent with the current policy, and the policy stabilizes T, —*> v,
only when it is greedy with respect to the current value function.

Thus, both processes stabilize only when a policy has been found that is greedy with
respect to its own evaluation function. This implies that the Bellman optimality equation
(4.1) holds, and thus that the policy and the value function are optimal.

The evaluation and improvement processes in GPI can be viewed as both competing
and cooperating. They compete in the sense that they pull in opposing directions. Making
the policy greedy with respect to the value function typically makes the value function
incorrect for the changed policy, and making the value function consistent with the policy
typically causes that policy no longer to be greedy. In the long run, however, these
two processes interact to find a single joint solution: the optimal value function and an
optimal policy.
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One might also think of the interaction between
the evaluation and improvement processes in GPI
in terms of two constraints or goals—for example,
as two lines in two-dimensional space as suggested
by the diagram to the right. Although the real v
geometry is much more complicated than this, the
diagram suggests what happens in the real case.
Each process drives the value function or policy
toward one of the lines representing a solution to
one of the two goals. The goals interact because the two lines are not orthogonal. Driving
directly toward one goal causes some movement away from the other goal. Inevitably,
however, the joint process is brought closer to the overall goal of optimality. The arrows
in this diagram correspond to the behavior of policy iteration in that each takes the
system all the way to achieving one of the two goals completely. In GPI one could also
take smaller, incomplete steps toward each goal. In either case, the two processes together
achieve the overall goal of optimality even though neither is attempting to achieve it
directly.

Usey T

= greedy Q)

4.7 Efficiency of Dynamic Programming

DP may not be practical for very large problems, but compared with other methods for
solving MDPs, DP methods are actually quite efficient. If we ignore a few technical details,
then the (worst case) time DP methods take to find an optimal policy is polynomial in
the number of states and actions. If n and k denote the number of states and actions, this
means that a DP method takes a number of computational operations that is less than
some polynomial function of n and k. A DP method is guaranteed to find an optimal
policy in polynomial time even though the total number of (deterministic) policies is k™.
In this sense, DP is exponentially faster than any direct search in policy space could
be, because direct search would have to exhaustively examine each policy to provide the
same guarantee. Linear programming methods can also be used to solve MDPs, and in
some cases their worst-case convergence guarantees are better than those of DP methods.
But linear programming methods become impractical at a much smaller number of states
than do DP methods (by a factor of about 100). For the largest problems, only DP
methods are feasible.

DP is sometimes thought to be of limited applicability because of the curse of dimen-
stonality, the fact that the number of states often grows exponentially with the number
of state variables. Large state sets do create difficulties, but these are inherent difficulties
of the problem, not of DP as a solution method. In fact, DP is comparatively better
suited to handling large state spaces than competing methods such as direct search and
linear programming.

In practice, DP methods can be used with today’s computers to solve MDPs with
millions of states. Both policy iteration and value iteration are widely used, and it is not
clear which, if either, is better in general. In practice, these methods usually converge
much faster than their theoretical worst-case run times, particularly if they are started
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with good initial value functions or policies.

On problems with large state spaces, asynchronous DP methods are often preferred. To
complete even one sweep of a synchronous method requires computation and memory for
every state. For some problems, even this much memory and computation is impractical,
yet the problem is still potentially solvable because relatively few states occur along
optimal solution trajectories. Asynchronous methods and other variations of GPI can be
applied in such cases and may find good or optimal policies much faster than synchronous
methods can.

4.8 Summary

In this chapter we have become familiar with the basic ideas and algorithms of dynamic
programming as they relate to solving finite MDPs. Policy evaluation refers to the (typi-
cally) iterative computation of the value functions for a given policy. Policy improvement
refers to the computation of an improved policy given the value function for that policy.
Putting these two computations together, we obtain policy iteration and wvalue iteration,
the two most popular DP methods. Either of these can be used to reliably compute
optimal policies and value functions for finite MDPs given complete knowledge of the
MDP.

Classical DP methods operate in sweeps through the state set, performing an expected
update operation on each state. Each such operation updates the value of one state
based on the values of all possible successor states and their probabilities of occurring.
Expected updates are closely related to Bellman equations: they are little more than
these equations turned into assignment statements. When the updates no longer result in
any changes in value, convergence has occurred to values that satisfy the corresponding
Bellman equation. Just as there are four primary value functions (v, v, ¢, and gs),
there are four corresponding Bellman equations and four corresponding expected updates.
An intuitive view of the operation of DP updates is given by their backup diagrams.

Insight into DP methods and, in fact, into almost all reinforcement learning methods,
can be gained by viewing them as generalized policy iteration (GPI). GPI s the general idea
of two interacting processes revolving around an approximate policy and an approximate
value function. One process takes the policy as given and performs some form of policy
evaluation, changing the value function to be more like the true value function for the
policy. The other process takes the value function as given and performs some form
of policy improvement, changing the policy to make it better, assuming that the value
function is its value function. Although each process changes the basis for the other,
overall they work together to find a joint solution: a policy and value function that are
unchanged by either process and, consequently, are optimal. In some cases, GPI can be
proved to converge, most notably for the classical DP methods that we have presented in
this chapter. In other cases convergence has not been proved, but still the idea of GPI
improves our understanding of the methods.

It is not necessary to perform DP methods in complete sweeps through the state
set. Asynchronous DP methods are in-place iterative methods that update states in an
arbitrary order, perhaps stochastically determined and using out-of-date information.
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Many of these methods can be viewed as fine-grained forms of GPI.

Finally, we note one last special property of DP methods. All of them update estimates
of the values of states based on estimates of the values of successor states. That is, they
update estimates on the basis of other estimates. We call this general idea bootstrapping.
Many reinforcement learning methods perform bootstrapping, even those that do not
require, as DP requires, a complete and accurate model of the environment. In the next
chapter we explore reinforcement learning methods that do not require a model and do
not bootstrap. In the chapter after that we explore methods that do not require a model
but do bootstrap. These key features and properties are separable, yet can be mixed in
interesting combinations.

Bibliographical and Historical Remarks

The term “dynamic programming” is due to Bellman (1957a), who showed how these
methods could be applied to a wide range of problems. Extensive treatments of DP can
be found in many texts, including Bertsekas (2005, 2012), Bertsekas and Tsitsiklis (1996),
Dreyfus and Law (1977), Ross (1983), White (1969), and Whittle (1982, 1983). Our
interest in DP is restricted to its use in solving MDPs, but DP also applies to other types
of problems. Kumar and Kanal (1988) provide a more general look at DP.

To the best of our knowledge, the first connection between DP and reinforcement
learning was made by Minsky (1961) in commenting on Samuel’s checkers player. In
a footnote, Minsky mentioned that it is possible to apply DP to problems in which
Samuel’s backing-up process can be handled in closed analytic form. This remark may
have misled artificial intelligence researchers into believing that DP was restricted to
analytically tractable problems and therefore largely irrelevant to artificial intelligence.
Andreae (1969b) mentioned DP in the context of reinforcement learning, specifically
policy iteration, although he did not make specific connections between DP and learning
algorithms. Werbos (1977) suggested an approach to approximating DP called “heuristic
dynamic programming” that emphasizes gradient-descent methods for continuous-state
problems (Werbos, 1982, 1987, 1988, 1989, 1992). These methods are closely related to
the reinforcement learning algorithms that we discuss in this book. Watkins (1989) was
explicit in connecting reinforcement learning to DP, characterizing a class of reinforcement
learning methods as “incremental dynamic programming.”

4.1-4 These sections describe well-established DP algorithms that are covered in any of
the general DP references cited above. The policy improvement theorem and the
policy iteration algorithm are due to Bellman (1957a) and Howard (1960). Our
presentation was influenced by the local view of policy improvement taken by
Watkins (1989). Our discussion of value iteration as a form of truncated policy
iteration is based on the approach of Puterman and Shin (1978), who presented a
class of algorithms called modified policy iteration, which includes policy iteration
and value iteration as special cases. An analysis showing how value iteration can
be made to find an optimal policy in finite time is given by Bertsekas (1987).

Iterative policy evaluation is an example of a classical successive approximation
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4.5

4.7

algorithm for solving a system of linear equations. The version of the algorithm
that uses two arrays, one holding the old values while the other is updated, is
often called a Jacobi-style algorithm, after Jacobi’s classical use of this method.
It is also sometimes called a synchronous algorithm because the effect is as if all
the values are updated at the same time. The second array is needed to simulate
this parallel computation sequentially. The in-place version of the algorithm
is often called a Gauss—Seidel-style algorithm after the classical Gauss—Seidel
algorithm for solving systems of linear equations. In addition to iterative policy
evaluation, other DP algorithms can be implemented in these different versions.
Bertsekas and Tsitsiklis (1989) provide excellent coverage of these variations and
their performance differences.

Asynchronous DP algorithms are due to Bertsekas (1982, 1983), who also called
them distributed DP algorithms. The original motivation for asynchronous
DP was its implementation on a multiprocessor system with communication
delays between processors and no global synchronizing clock. These algorithms
are extensively discussed by Bertsekas and Tsitsiklis (1989). Jacobi-style and
Gauss—Seidel-style DP algorithms are special cases of the asynchronous version.
Williams and Baird (1990) presented DP algorithms that are asynchronous at a
finer grain than the ones we have discussed: the update operations themselves
are broken into steps that can be performed asynchronously.

This section, written with the help of Michael Littman, is based on Littman,
Dean, and Kaelbling (1995). The phrase “curse of dimensionality” is due to
Bellman (1957a).

Foundational work on the linear programming approach to reinforcement learning
was done by Daniela de Farias (de Farias, 2002; de Farias and Van Roy, 2003).
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Monte Carlo Methods

In this chapter we consider our first learning methods for estimating value functions and
discovering optimal policies. Unlike the previous chapter, here we do not assume complete
knowledge of the environment. Monte Carlo methods require only ezperience—sample
sequences of states, actions, and rewards from actual or simulated interaction with an
environment. Learning from actual experience is striking because it requires no prior
knowledge of the environment’s dynamics, yet can still attain optimal behavior. Learning
from simulated experience is also powerful. Although a model is required, the model need
only generate sample transitions, not the complete probability distributions of all possible
transitions that is required for dynamic programming (DP). In surprisingly many cases it
is easy to generate experience sampled according to the desired probability distributions,
but infeasible to obtain the distributions in explicit form.

Monte Carlo methods are ways of solving the reinforcement learning problem based on
averaging sample returns. To ensure that well-defined returns are available, here we define
Monte Carlo methods only for episodic tasks. That is, we assume experience is divided
into episodes, and that all episodes eventually terminate no matter what actions are
selected. Only on the completion of an episode are value estimates and policies changed.
Monte Carlo methods can thus be incremental in an episode-by-episode sense, but not in
a step-by-step (online) sense. The term “Monte Carlo” is often used more broadly for
any estimation method whose operation involves a significant random component. Here
we use it specifically for methods based on averaging complete returns (as opposed to
methods that learn from partial returns, considered in the next chapter).

Monte Carlo methods sample and average returns for each state—action pair much like
the bandit methods we explored in Chapter 2 sample and average rewards for each action.
The main difference is that now there are multiple states, each acting like a different
bandit problem (like an associative-search or contextual bandit) and the different bandit
problems are interrelated. That is, the return after taking an action in one state depends
on the actions taken in later states in the same episode. Because all the action selections
are undergoing learning, the problem becomes nonstationary from the point of view of
the earlier state.

91
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To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from knowledge
of the MDP, here we learn value functions from sample returns with the MDP. The value
functions and corresponding policies still interact to attain optimality in essentially the
same way (GPI). As in the DP chapter, first we consider the prediction problem (the
computation of v, and ¢, for a fixed arbitrary policy 7) then policy improvement, and,
finally, the control problem and its solution by GPI. Each of these ideas taken from DP
is extended to the Monte Carlo case in which only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function for a
given policy. Recall that the value of a state is the expected return—expected cumulative
future discounted reward—starting from that state. An obvious way to estimate it from
experience, then, is simply to average the returns observed after visits to that state. As
more returns are observed, the average should converge to the expected value. This idea
underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v, (s), the value of a state s under policy m,
given a set of episodes obtained by following 7 and passing through s. Each occurrence
of state s in an episode is called a wvisit to s. Of course, s may be visited multiple times
in the same episode; let us call the first time it is visited in an episode the first visit
to s. The first-visit MC method estimates v,(s) as the average of the returns following
first visits to s, whereas the every-visit MC method averages the returns following all
visits to s. These two Monte Carlo (MC) methods are very similar but have slightly
different theoretical properties. First-visit MC has been most widely studied, dating back
to the 1940s, and is the one we focus on in this chapter. Every-visit MC extends more
naturally to function approximation and eligibility traces, as discussed in Chapters 9 and
12. First-visit MC is shown in procedural form in the box. Every-visit MC would be the
same except without the check for S; having occurred earlier in the episode.

First-visit MC prediction, for estimating V ~ v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € 8
Returns(s) < an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following 7: So, Ao, R1, 51, A1, R2,...,S7—1,Ar—1, Rr
G+0
Loop for each step of episode, t =T—-1,T7—-2,...,0:
G+ vG+ Ryt
Unless S: appears in So, S1, ..., St—1:
Append G to Returns(St)
V(S¢) < average(Returns(St))
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Both first-visit MC and every-visit MC converge to v.(s) as the number of visits (or
first visits) to s goes to infinity. This is easy to see for the case of first-visit MC. In
this case each return is an independent, identically distributed estimate of v, (s) with
finite variance. By the law of large numbers the sequence of averages of these estimates
converges to their expected value. Each average is itself an unbiased estimate, and the
standard deviation of its error falls as 1/4/n, where n is the number of returns averaged.
Every-visit MC is less straightforward, but its estimates also converge quadratically to
vr(8) (Singh and Sutton, 1996).

The use of Monte Carlo methods is best illustrated through an example.

Example 5.1: Blackjack The object of the popular casino card game of blackjack is to
obtain cards the sum of whose numerical values is as great as possible without exceeding
21. All face cards count as 10, and an ace can count either as 1 or as 11. We consider
the version in which each player competes independently against the dealer. The game
begins with two cards dealt to both dealer and player. One of the dealer’s cards is face
up and the other is face down. If the player has 21 immediately (an ace and a 10-card),
it is called a natural. He then wins unless the dealer also has a natural, in which case the
game is a draw. If the player does not have a natural, then he can request additional
cards, one by one (hits), until he either stops (sticks) or exceeds 21 (goes bust). If he goes
bust, he loses; if he sticks, then it becomes the dealer’s turn. The dealer hits or sticks
according to a fixed strategy without choice: he sticks on any sum of 17 or greater, and
hits otherwise. If the dealer goes bust, then the player wins; otherwise, the outcome—win,
lose, or draw—is determined by whose final sum is closer to 21.

Playing blackjack is naturally formulated as an episodic finite MDP. Each game of
blackjack is an episode. Rewards of +1, —1, and 0 are given for winning, losing, and
drawing, respectively. All rewards within a game are zero, and we do not discount (y = 1);
therefore these terminal rewards are also the returns. The player’s actions are to hit or
to stick. The states depend on the player’s cards and the dealer’s showing card. We
assume that cards are dealt from an infinite deck (i.e., with replacement) so that there is
no advantage to keeping track of the cards already dealt. If the player holds an ace that
he could count as 11 without going bust, then the ace is said to be usable. In this case
it is always counted as 11 because counting it as 1 would make the sum 11 or less, in
which case there is no decision to be made because, obviously, the player should always
hit. Thus, the player makes decisions on the basis of three variables: his current sum
(12-21), the dealer’s one showing card (ace—10), and whether or not he holds a usable
ace. This makes for a total of 200 states.

Consider the policy that sticks if the player’s sum is 20 or 21, and otherwise hits. To
find the state-value function for this policy by a Monte Carlo approach, one simulates
many blackjack games using the policy and averages the returns following each state.
In this way, we obtained the estimates of the state-value function shown in Figure 5.1.
The estimates for states with a usable ace are less certain and less regular because these
states are less common. In any event, after 500,000 games the value function is very well
approximated.
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After 10,000 episodes After 500,000 episodes

Usable
ace

No
usable
ace

Figure 5.1: Approximate state-value functions for the blackjack policy that sticks only on 20
or 21, computed by Monte Carlo policy evaluation. |

Ezercise 5.1 Consider the diagrams on the right in Figure 5.1. Why does the estimated
value function jump up for the last two rows in the rear? Why does it drop off for the
whole last row on the left? Why are the frontmost values higher in the upper diagrams
than in the lower? |

Ezercise 5.2 Suppose every-visit MC was used instead of first-visit MC on the blackjack
task. Would you expect the results to be very different? Why or why not? ]

Although we have complete knowledge of the environment in the blackjack task, it
would not be easy to apply DP methods to compute the value function. DP methods
require the distribution of next events—in particular, they require the environments
dynamics as given by the four-argument function p—and it is not easy to determine
this for blackjack. For example, suppose the player’s sum is 14 and he chooses to stick.
What is his probability of terminating with a reward of +1 as a function of the dealer’s
showing card? All of the probabilities must be computed before DP can be applied, and
such computations are often complex and error-prone. In contrast, generating the sample
games required by Monte Carlo methods is easy. This is the case surprisingly often; the
ability of Monte Carlo methods to work with sample episodes alone can be a significant
advantage even when one has complete knowledge of the environment’s dynamics.

Can we generalize the idea of backup diagrams to Monte Carlo algorithms? The
general idea of a backup diagram is to show at the top the root node to be updated and
to show below all the transitions and leaf nodes whose rewards and estimated values
contribute to the update. For Monte Carlo estimation of v,, the root is a state node, and
below it is the entire trajectory of transitions along a particular single episode, ending
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at the terminal state, as shown to the right. Whereas the DP diagram (page 59)
shows all possible transitions, the Monte Carlo diagram shows only those sampled ?
on the one episode. Whereas the DP diagram includes only one-step transitions,
the Monte Carlo diagram goes all the way to the end of the episode. These I
differences in the diagrams accurately reflect the fundamental differences between
the algorithms. ?
An important fact about Monte Carlo methods is that the estimates for each hd
state are independent. The estimate for one state does not build upon the estimate
of any other state, as is the case in DP. In other words, Monte Carlo methods do
not bootstrap as we defined it in the previous chapter. I
In particular, note that the computational expense of estimating the value of
a single state is independent of the number of states. This can make Monte Carlo
methods particularly attractive when one requires the value of only one or a subset
of states. One can generate many sample episodes starting from the states of interest,
averaging returns from only these states, ignoring all others. This is a third advantage
Monte Carlo methods can have over DP methods (after the ability to learn from actual
experience and from simulated experience).

Example 5.2: Soap Bubble Suppose a wire —_— — —
frame forming a closed loop is dunked in soapy r/ ‘
water to form a soap surface or bubble conform- >

ing at its edges to the wire frame. If the geom- =

etry of the wire frame is irregular but known,
how can you compute the shape of the surface? i '
The shape has the property that the total force |
on each point exerted by neighboring points is .
zero (or else the shape would change). This
means that the surface’s height at any point is |[/#
the average of its heights at points in a small A bubble on a wire loop.

circle around that point. In addition, the sur- fyom Hersh and Griego (1969). Reproduced with
face must meet at its boundaries with the wire permission. ©1969 Scientific American, a divi-
frame. The usual approach to problems of this sion of Nature America, Inc. All rights reserved.
kind is to put a grid over the area covered by

the surface and solve for its height at the grid points by an iterative computation. Grid
points at the boundary are forced to the wire frame, and all others are adjusted toward
the average of the heights of their four nearest neighbors. This process then iterates, much
like DP’s iterative policy evaluation, and ultimately converges to a close approximation
to the desired surface.

This is similar to the kind of problem for which Monte Carlo methods were originally
designed. Instead of the iterative computation described above, imagine standing on the
surface and taking a random walk, stepping randomly from grid point to neighboring
grid point, with equal probability, until you reach the boundary. It turns out that the
expected value of the height at the boundary is a close approximation to the height of
the desired surface at the starting point (in fact, it is exactly the value computed by the
iterative method described above). Thus, one can closely approximate the height of the
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surface at a point by simply averaging the boundary heights of many walks started at
the point. If one is interested in only the value at one point, or any fixed small set of
points, then this Monte Carlo method can be far more efficient than the iterative method
based on local consistency. ]

5.2 Monte Carlo Estimation of Action Values

If a model is not available, then it is particularly useful to estimate action values (the
values of state—action pairs) rather than state values. With a model, state values alone are
sufficient to determine a policy; one simply looks ahead one step and chooses whichever
action leads to the best combination of reward and next state, as we did in the chapter on
DP. Without a model, however, state values alone are not sufficient. One must explicitly
estimate the value of each action in order for the values to be useful in suggesting a policy.
Thus, one of our primary goals for Monte Carlo methods is to estimate g.. To achieve
this, we first consider the policy evaluation problem for action values.

The policy evaluation problem for action values is to estimate ¢, (s, a), the expected
return when starting in state s, taking action a, and thereafter following policy w. The
Monte Carlo methods for this are essentially the same as just presented for state values,
except now we talk about visits to a state—action pair rather than to a state. A state—
action pair s, a is said to be visited in an episode if ever the state s is visited and action
a is taken in it. The every-visit MC method estimates the value of a state—action pair
as the average of the returns that have followed all the visits to it. The first-visit MC
method averages the returns following the first time in each episode that the state was
visited and the action was selected. These methods converge quadratically, as before, to
the true expected values as the number of visits to each state—action pair approaches
infinity.

The only complication is that many state—action pairs may never be visited. If 7 is
a deterministic policy, then in following 7 one will observe returns only for one of the
actions from each state. With no returns to average, the Monte Carlo estimates of the
other actions will not improve with experience. This is a serious problem because the
purpose of learning action values is to help in choosing among the actions available in
each state. To compare alternatives we need to estimate the value of all the actions from
each state, not just the one we currently favor.

This is the general problem of maintaining exploration, as discussed in the context
of the k-armed bandit problem in Chapter 2. For policy evaluation to work for action
values, we must assure continual exploration. One way to do this is by specifying that
the episodes start in a state—action pair, and that every pair has a nonzero probability of
being selected as the start. This guarantees that all state-action pairs will be visited an
infinite number of times in the limit of an infinite number of episodes. We call this the
assumption of exploring starts.

The assumption of exploring starts is sometimes useful, but of course it cannot be
relied upon in general, particularly when learning directly from actual interaction with an
environment. In that case the starting conditions are unlikely to be so helpful. The most
common alternative approach to assuring that all state-action pairs are encountered is
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to consider only policies that are stochastic with a nonzero probability of selecting all
actions in each state. We discuss two important variants of this approach in later sections.
For now, we retain the assumption of exploring starts and complete the presentation of a
full Monte Carlo control method.

Ezercise 5.3 What is the backup diagram for Monte Carlo estimation of ¢, 7 |

5.3 Monte Carlo Control

We are now ready to consider how Monte Carlo estimation can be used in control, that
is, to approximate optimal policies. The overall idea is to proceed according to the same
pattern as in the DP chapter, that is, according to the idea of generalized policy iteration
(GPI). In GPI one maintains both an approximate policy and evaluation

an approximate value function. The value function is repeatedly /Q;N
altered to more closely approximate the value function for the

current policy, and the policy is repeatedly improved with respect

to the current value function, as suggested by the diagram to T Q
the right. These two kinds of changes work against each other to
some extent, as each creates a moving target for the other, but
together they cause both policy and value function to approach improvement
optimality.

To begin, let us consider a Monte Carlo version of classical policy iteration. In
this method, we perform alternating complete steps of policy evaluation and policy
improvement, beginning with an arbitrary policy mg and ending with the optimal policy
and optimal action-value function:

7~ greedy(Q)

B 1 E I E I E
7T0—>q7r0—)71'1 —)qﬂ—l—>ﬂ'2—>"'—>’ﬂ'* — (Qx,

where — denotes a complete policy evaluation and — denotes a complete policy
improvement. Policy evaluation is done exactly as described in the preceding section.
Many episodes are experienced, with the approximate action-value function approaching
the true function asymptotically. For the moment, let us assume that we do indeed
observe an infinite number of episodes and that, in addition, the episodes are generated
with exploring starts. Under these assumptions, the Monte Carlo methods will compute
each ¢, exactly, for arbitrary my.

Policy improvement is done by making the policy greedy with respect to the current
value function. In this case we have an action-value function, and therefore no model is
needed to construct the greedy policy. For any action-value function ¢, the corresponding
greedy policy is the one that, for each s € 8, deterministically chooses an action with
maximal action-value:

m(s) = argmgxq(s,a). (5.1)

Policy improvement then can be done by constructing each 71 as the greedy policy
with respect to ¢,,. The policy improvement theorem (Section 4.2) then applies to 7y
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and 741 because, for all s € 8,
qﬂk(svwk-i-l(s)) = qﬁk(s,argmaxqﬁk(s,a))
a
= maxqr,(s,a)
a

Gy (5, 71(5))

Uz, ().

(A\VANAYS

As we discussed in the previous chapter, the theorem assures us that each 71 is uniformly
better than 7y, or just as good as 7, in which case they are both optimal policies. This
in turn assures us that the overall process converges to the optimal policy and optimal
value function. In this way Monte Carlo methods can be used to find optimal policies
given only sample episodes and no other knowledge of the environment’s dynamics.

We made two unlikely assumptions above in order to easily obtain this guarantee of
convergence for the Monte Carlo method. One was that the episodes have exploring
starts, and the other was that policy evaluation could be done with an infinite number of
episodes. To obtain a practical algorithm we will have to remove both assumptions. We
postpone consideration of the first assumption until later in this chapter.

For now we focus on the assumption that policy evaluation operates on an infinite
number of episodes. This assumption is relatively easy to remove. In fact, the same issue
arises even in classical DP methods such as iterative policy evaluation, which also converge
only asymptotically to the true value function. In both DP and Monte Carlo cases there
are two ways to solve the problem. One is to hold firm to the idea of approximating g,
in each policy evaluation. Measurements and assumptions are made to obtain bounds
on the magnitude and probability of error in the estimates, and then sufficient steps are
taken during each policy evaluation to assure that these bounds are sufficiently small.
This approach can probably be made completely satisfactory in the sense of guaranteeing
correct convergence up to some level of approximation. However, it is also likely to require
far too many episodes to be useful in practice on any but the smallest problems.

There is a second approach to avoiding the infinite number of episodes nominally
required for policy evaluation, in which we give up trying to complete policy evaluation
before returning to policy improvement. On each evaluation step we move the value
function toward ¢, , but we do not expect to actually get close except over many steps.
We used this idea when we first introduced the idea of GPI in Section 4.6. One extreme
form of the idea is value iteration, in which only one iteration of iterative policy evaluation
is performed between each step of policy improvement. The in-place version of value
iteration is even more extreme; there we alternate between improvement and evaluation
steps for single states.

For Monte Carlo policy iteration it is natural to alternate between evaluation and
improvement on an episode-by-episode basis. After each episode, the observed returns
are used for policy evaluation, and then the policy is improved at all the states visited in
the episode. A complete simple algorithm along these lines, which we call Monte Carlo
ES, for Monte Carlo with Exploring Starts, is given in pseudocode in the box on the next

page.
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Monte Carlo ES (Exploring Starts), for estimating 7 ~ 7,

Initialize:
m(s) € A(s) (arbitrarily), for all s € 8
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) < empty list, for all s € 8§, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ag € A(Sy) randomly such that all pairs have probability > 0
Generate an episode from Sy, Ay, following 7: Sy, Ag, Ry,...,S7—1,Ar_1, RT
G+ 0
Loop for each step of episode, t =T—1,T—-2,...,0:
G+ vG + Ryyq
Unless the pair Sy, A; appears in Sy, Ag, S1, A1 ...,S¢—1,As_1:
Append G to Returns(St, At)
Q(St, Ay) < average(Returns(S, At))
7(Sy) + argmax, Q(S,a)

FEzercise 5.4 The pseudocode for Monte Carlo ES is inefficient because, for each state—
action pair, it maintains a list of all returns and repeatedly calculates their mean. It would
be more efficient to use techniques similar to those explained in Section 2.4 to maintain
just the mean and a count (for each state—action pair) and update them incrementally.
Describe how the pseudocode would be altered to achieve this. ([l

In Monte Carlo ES, all the returns for each state—action pair are accumulated and
averaged, irrespective of what policy was in force when they were observed. It is easy
to see that Monte Carlo ES cannot converge to any suboptimal policy. If it did, then
the value function would eventually converge to the value function for that policy, and
that in turn would cause the policy to change. Stability is achieved only when both
the policy and the value function are optimal. Convergence to this optimal fixed point
seems inevitable as the changes to the action-value function decrease over time, but has
not yet been formally proved. In our opinion, this is one of the most fundamental open
theoretical questions in reinforcement learning (for a partial solution, see Tsitsiklis, 2002).

Example 5.3: Solving Blackjack It is straightforward to apply Monte Carlo ES to
blackjack. Because the episodes are all simulated games, it is easy to arrange for exploring
starts that include all possibilities. In this case one simply picks the dealer’s cards, the
player’s sum, and whether or not the player has a usable ace, all at random with equal
probability. As the initial policy we use the policy evaluated in the previous blackjack
example, that which sticks only on 20 or 21. The initial action-value function can be zero
for all state—action pairs. Figure 5.2 shows the optimal policy for blackjack found by
Monte Carlo ES. This policy is the same as the “basic” strategy of Thorp (1966) with the
sole exception of the leftmost notch in the policy for a usable ace, which is not present
in Thorp’s strategy. We are uncertain of the reason for this discrepancy, but confident
that what is shown here is indeed the optimal policy for the version of blackjack we have
described.



100 Chapter 5: Monte Carlo Methods

ﬂ?*

Jo1

STICK Agg

Usable J S 1

ace 116

115

HIT 114

113

112

1

A2345678910

121
120 c

19
No STICK 1is

17
usable 116 5
ace 158
HIT L

112

11

N
A23456780910
Dealer showing

Figure 5.2: The optimal policy and state-value function for blackjack, found by Monte Carlo
ES. The state-value function shown was computed from the action-value function found by
Monte Carlo ES. |

5.4 Monte Carlo Control without Exploring Starts

How can we avoid the unlikely assumption of exploring starts? The only general way to
ensure that all actions are selected infinitely often is for the agent to continue to select
them. There are two approaches to ensuring this, resulting in what we call on-policy
methods and off-policy methods. On-policy methods attempt to evaluate or improve the
policy that is used to make decisions, whereas off-policy methods evaluate or improve
a policy different from that used to generate the data. The Monte Carlo ES method
developed above is an example of an on-policy method. In this section we show how an
on-policy Monte Carlo control method can be designed that does not use the unrealistic
assumption of exploring starts. Off-policy methods are considered in the next section.
In on-policy control methods the policy is generally soft, meaning that 7(a|s) > 0
for all s € 8§ and all a € A(s), but gradually shifted closer and closer to a deterministic
optimal policy. Many of the methods discussed in Chapter 2 provide mechanisms for
this. The on-policy method we present in this section uses e-greedy policies, meaning
that most of the time they choose an action that has maximal estimated action value,
but with probability € they instead select an action at random. That is, all nongreedy
actions are given the minimal probability of selection, Mjis)l’ and the remaining bulk of
the probability, 1 — ¢ + Miis)l’ is given to the greedy action. The e-greedy policies are
£

examples of e-soft policies, defined as policies for which 7(a|s) > AT for all states and

actions, for some € > 0. Among e-soft policies, e-greedy policies are in some sense those
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that are closest to greedy.

The overall idea of on-policy Monte Carlo control is still that of GPI. As in Monte
Carlo ES, we use first-visit MC methods to estimate the action-value function for the
current policy. Without the assumption of exploring starts, however, we cannot simply
improve the policy by making it greedy with respect to the current value function, because
that would prevent further exploration of nongreedy actions. Fortunately, GPI does not
require that the policy be taken all the way to a greedy policy, only that it be moved
toward a greedy policy. In our on-policy method we will move it only to an e-greedy
policy. For any e-soft policy, 7, any e-greedy policy with respect to ¢, is guaranteed to
be better than or equal to . The complete algorithm is given in the box below.

On-policy first-visit MC control (for e-soft policies), estimates 7w ~ 7,

Algorithm parameter: small € > 0

Initialize:
7 < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) < empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sg, Ag, R1,...,57_1,Ar_1, R
G+ 0
Loop for each step of episode, t =T—-1,7—-2,...,0:
G+ vG + Ryyq
Unless the pair Sy, A; appears in Sy, Ag, S1,A1...,S:—1,A¢_1:
Append G to Returns(St, Az)
Q(St, Ap) < average(Returns(St, At))
A* + argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S):
1—cec+¢e/|A(S; if a = A*
mlalSe) « { A A

That any e-greedy policy with respect to ¢, is an improvement over any e-soft policy
7 is assured by the policy improvement theorem. Let 7’ be the e-greedy policy. The
conditions of the policy improvement theorem apply because for any s € S:

gr(s,7'(s)) = D 7(als)dn(s,a)

ae
— A za:qﬂ(s,a) + (1—5)m3xqﬂ(s,a) (5.2)
€ m(als) — \Afs)|

(the sum is a weighted average with nonnegative weights summing to 1, and as such it
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must be less than or equal to the largest number averaged)

€ €
=A@ 2D g e (50) + 3 nlals)an(sio)

a

= vg(s).

Thus, by the policy improvement theorem, ' > 7 (i.e., v/ (8) > vg(s), for all s € 8). We
now prove that equality can hold only when both 7’ and 7 are optimal among the e-soft
policies, that is, when they are better than or equal to all other e-soft policies.

Consider a new environment that is just like the original environment, except with the
requirement that policies be e-soft “moved inside” the environment. The new environment
has the same action and state set as the original and behaves as follows. If in state s
and taking action a, then with probability 1 — ¢ the new environment behaves exactly
like the old environment. With probability € it repicks the action at random, with equal
probabilities, and then behaves like the old environment with the new, random action.
The best one can do in this new environment with general policies is the same as the
best one could do in the original environment with e-soft policies. Let v, and ¢, denote
the optimal value functions for the new environment. Then a policy 7 is optimal among
e-soft policies if and only if v, = v,. From the definition of v, we know that it is the
unique solution to

T = (=m0 + e S a s

= (1-¢) mngp(s’,Hs, a) [r + 'y'?}*(s')}

s',r

+ \A?s)| ;;;)(8’7“5,@)[r—i—’yﬁ*(s')]

When equality holds and the e-soft policy 7 is no longer improved, then we also know,
from (5.2), that

’UW(S) = (1 - 5) m{?XQTr(Sva) + m ;q‘n(saco

= (1-¢) mngp(s', r|s,a) {r + 'yvﬂ(s’)}

s'r

Ve 2 Zp( rls o) |7+ 0e(s)].

However, this equation is the same as the previous one, except for the substitution of v,
for v,. Because v, is the unique solution, it must be that v, = v,.

In essence, we have shown in the last few pages that policy iteration works for e-soft
policies. Using the natural notion of greedy policy for e-soft policies, one is assured of
improvement on every step, except when the best policy has been found among the e-soft
policies. This analysis is independent of how the action-value functions are determined
at each stage, but it does assume that they are computed exactly. This brings us to
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roughly the same point as in the previous section. Now we only achieve the best policy
among the e-soft policies, but on the other hand, we have eliminated the assumption of
exploring starts.

5.5 Off-policy Prediction via Importance Sampling

All learning control methods face a dilemma: They seek to learn action values conditional
on subsequent optimal behavior, but they need to behave non-optimally in order to
explore all actions (to find the optimal actions). How can they learn about the optimal
policy while behaving according to an exploratory policy? The on-policy approach in the
preceding section is actually a compromise—it learns action values not for the optimal
policy, but for a near-optimal policy that still explores. A more straightforward approach
is to use two policies, one that is learned about and that becomes the optimal policy, and
one that is more exploratory and is used to generate behavior. The policy being learned
about is called the target policy, and the policy used to generate behavior is called the
behavior policy. In this case we say that learning is from data “off” the target policy, and
the overall process is termed off-policy learning.

Throughout the rest of this book we consider both on-policy and off-policy methods.
On-policy methods are generally simpler and are considered first. Off-policy methods
require additional concepts and notation, and because the data is due to a different policy,
off-policy methods are often of greater variance and are slower to converge. On the other
hand, off-policy methods are more powerful and general. They include on-policy methods
as the special case in which the target and behavior policies are the same. Off-policy
methods also have a variety of additional uses in applications. For example, they can
often be applied to learn from data generated by a conventional non-learning controller,
or from a human expert. Off-policy learning is also seen by some as key to learning
multi-step predictive models of the world’s dynamics (see Section 17.2; Sutton, 2009;
Sutton et al., 2011).

In this section we begin the study of off-policy methods by considering the prediction
problem, in which both target and behavior policies are fixed. That is, suppose we wish
to estimate v, or g, but all we have are episodes following another policy b, where
b # 7. In this case, 7 is the target policy, b is the behavior policy, and both policies are
considered fixed and given.

In order to use episodes from b to estimate values for m, we require that every action
taken under 7 is also taken, at least occasionally, under b. That is, we require that
m(als) > 0 implies b(a|s) > 0. This is called the assumption of coverage. It follows
from coverage that b must be stochastic in states where it is not identical to w. The
target policy m, on the other hand, may be deterministic, and, in fact, this is a case
of particular interest in control applications. In control, the target policy is typically
the deterministic greedy policy with respect to the current estimate of the action-value
function. This policy becomes a deterministic optimal policy while the behavior policy
remains stochastic and more exploratory, for example, an e-greedy policy. In this section,
however, we consider the prediction problem, in which 7 is unchanging and given.

Almost all off-policy methods utilize importance sampling, a general technique for
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estimating expected values under one distribution given samples from another. We apply
importance sampling to off-policy learning by weighting returns according to the relative
probability of their trajectories occurring under the target and behavior policies, called
the importance-sampling ratio. Given a starting state S, the probability of the subsequent
state—action trajectory, As, Sty1, Att1, ..., 97, occurring under any policy 7 is

Pr{As, Sey1, Ay, .., 87 | Se, Apr—1 ~ 7}

T(A¢|St)p(Se41] St Ae)m(Ae 1| Se1) - - - p(ST| ST—1, AT—1)
T—1

= T #(ArISk)p(Skr1 Sk, Av),
k=t

where p here is the state-transition probability function defined by (3.4). Thus, the relative
probability of the trajectory under the target and behavior policies (the importance-
sampling ratio) is

- HZ:_tl 7 (Ak|Sk)p(Sk+1[ Sk, Ax) = 7(Ag|Sk)
PtT—1 = g - H TGS (5.3)
pe D(AklSk)P(Ski1|Sk, Ar) sy 0(Ak[Sk)

Although the trajectory probabilities depend on the MDP’s transition probabilities, which
are generally unknown, they appear identically in both the numerator and denominator,
and thus cancel. The importance sampling ratio ends up depending only on the two
policies and the sequence, not on the MDP.

Recall that we wish to estimate the expected returns (values) under the target policy,
but all we have are returns G; due to the behavior policy. These returns have the wrong
expectation E[G|S:=s] = vp(s) and so cannot be averaged to obtain v,. This is where
importance sampling comes in. The ratio p;.p—1 transforms the returns to have the right
expected value:

Elprr-1Gt | St=3] = vz (s). (5.4)

Now we are ready to give a Monte Carlo algorithm that averages returns from a batch
of observed episodes following policy b to estimate v, (s). It is convenient here to number
time steps in a way that increases across episode boundaries. That is, if the first episode
of the batch ends in a terminal state at time 100, then the next episode begins at time
t = 101. This enables us to use time-step numbers to refer to particular steps in particular
episodes. In particular, we can define the set of all time steps in which state s is visited,
denoted T(s). This is for an every-visit method; for a first-visit method, J(s) would only
include time steps that were first visits to s within their episodes. Also, let T'(¢) denote
the first time of termination following time ¢, and G; denote the return after ¢ up through
T(t). Then {G¢}iecq(s) are the returns that pertain to state s, and {ptiT(f/)*l}teT(s) are
the corresponding importance-sampling ratios. To estimate v, (s), we simply scale the
returns by the ratios and average the results:

N Zte:r(s) pt:T(t)—th

V(s) = (o)) (5.5)
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When importance sampling is done as a simple average in this way it is called ordinary
importance sampling.

An important alternative is weighted tmportance sampling, which uses a weighted
average, defined as

& PeT(t)-1G
V(s) = ety Pt 1Gr (5.6)
Zte‘j’(s) Pt:T(t)—1

or zero if the denominator is zero. To understand these two varieties of importance
sampling, consider the estimates of their first-visit methods after observing a single return
from state s. In the weighted-average estimate, the ratio py.p(;)—1 for the single return
cancels in the numerator and denominator, so that the estimate is equal to the observed
return independent of the ratio (assuming the ratio is nonzero). Given that this return
was the only one observed, this is a reasonable estimate, but its expectation is v, (s) rather
than v,(s), and in this statistical sense it is biased. In contrast, the first-visit version
of the ordinary importance-sampling estimator (5.5) is always v, (s) in expectation (it
is unbiased), but it can be extreme. Suppose the ratio were ten, indicating that the
trajectory observed is ten times as likely under the target policy as under the behavior
policy. In this case the ordinary importance-sampling estimate would be ten times the
observed return. That is, it would be quite far from the observed return even though the
episode’s trajectory is considered very representative of the target policy.

Formally, the difference between the first-visit methods of the two kinds of importance
sampling is expressed in their biases and variances. Ordinary importance sampling is
unbiased whereas weighted importance sampling is biased (though the bias converges
asymptotically to zero). On the other hand, the variance of ordinary importance sampling
is in general unbounded because the variance of the ratios can be unbounded, whereas in
the weighted estimator the largest weight on any single return is one. In fact, assuming
bounded returns, the variance of the weighted importance-sampling estimator converges
to zero even if the variance of the ratios themselves is infinite (Precup, Sutton, and
Dasgupta 2001). In practice, the weighted estimator usually has dramatically lower
variance and is strongly preferred. Nevertheless, we will not totally abandon ordinary
importance sampling as it is easier to extend to the approximate methods using function
approximation that we explore in the second part of this book.

The every-visit methods for ordinary and weighed importance sampling are both biased,
though, again, the bias falls asymptotically to zero as the number of samples increases.
In practice, every-visit methods are often preferred because they remove the need to keep
track of which states have been visited and because they are much easier to extend to
approximations. A complete every-visit MC algorithm for off-policy policy evaluation
using weighted importance sampling is given in the next section on page 110.

Exercise 5.5 Consider an MDP with a single nonterminal state and a single action
that transitions back to the nonterminal state with probability p and transitions to the
terminal state with probability 1—p. Let the reward be +1 on all transitions, and let
v=1. Suppose you observe one episode that lasts 10 steps, with a return of 10. What
are the first-visit and every-visit estimators of the value of the nonterminal state? O
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Example 5.4: Off-policy Estimation of a Blackjack State Value We applied
both ordinary and weighted importance-sampling methods to estimate the value of a single
blackjack state (Example 5.1) from off-policy data. Recall that one of the advantages
of Monte Carlo methods is that they can be used to evaluate a single state without
forming estimates for any other states. In this example, we evaluated the state in which
the dealer is showing a deuce, the sum of the player’s cards is 13, and the player has
a usable ace (that is, the player holds an ace and a deuce, or equivalently three aces).
The data was generated by starting in this state then choosing to hit or stick at random
with equal probability (the behavior policy). The target policy was to stick only on
a sum of 20 or 21, as in Example 5.1. The value of this state under the target policy
is approximately —0.27726 (this was determined by separately generating one-hundred
million episodes using the target policy and averaging their returns). Both off-policy
methods closely approximated this value after 1000 off-policy episodes using the random
policy. To make sure they did this reliably, we performed 100 independent runs, each
starting from estimates of zero and learning for 10,000 episodes. Figure 5.3 shows the
resultant learning curves—the squared error of the estimates of each method as a function
of number of episodes, averaged over the 100 runs. The error approaches zero for both
algorithms, but the weighted importance-sampling method has much lower error at the
beginning, as is typical in practice.

5rF

Mean
square
error

(average over [
100 runs)

Weighted importance sampling

OF, . : — — ;
0 10 100 1000 10,000
Episodes (log scale)

Figure 5.3: Weighted importance sampling produces lower error estimates of the value of a
single blackjack state from off-policy episodes. |

Example 5.5: Infinite Variance The estimates of ordinary importance sampling will
typically have infinite variance, and thus unsatisfactory convergence properties, whenever
the scaled returns have infinite variance—and this can easily happen in off-policy learning
when trajectories contain loops. A simple example is shown inset in Figure 5.4. There is
only one nonterminal state s and two actions, right and left. The right action causes a
deterministic transition to termination, whereas the left action transitions, with probability
0.9, back to s or, with probability 0.1, on to termination. The rewards are 4+1 on the
latter transition and otherwise zero. Consider the target policy that always selects left.
All episodes under this policy consist of some number (possibly zero) of transitions back
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to s followed by termination with a reward and return of +1. Thus the value of s under
the target policy is 1 (7 = 1). Suppose we are estimating this value from off-policy data
using the behavior policy that selects right and left with equal probability.

m(left]s) =1

b(left]s) — %

2be T
Monte-Carlo \

estimate of
vx(8) with
ordinary
importance |
sampling
(ten runs)

1 10 100 1000 10,000 100.000 1,000,000 10,000,000  100.000,000

Episodes (log scale)

Figure 5.4: Ordinary importance sampling produces surprisingly unstable estimates on the
one-state MDP shown inset (Example 5.5). The correct estimate here is 1 (y = 1), and, even
though this is the expected value of a sample return (after importance sampling), the variance
of the samples is infinite, and the estimates do not converge to this value. These results are for
off-policy first-visit MC.

The lower part of Figure 5.4 shows ten independent runs of the first-visit MC algorithm
using ordinary importance sampling. Even after millions of episodes, the estimates fail
to converge to the correct value of 1. In contrast, the weighted importance-sampling
algorithm would give an estimate of exactly 1 forever after the first episode that ended
with the left action. All returns not equal to 1 (that is, ending with the right action)
would be inconsistent with the target policy and thus would have a p;.7+)—; of zero and
contribute neither to the numerator nor denominator of (5.6). The weighted importance-
sampling algorithm produces a weighted average of only the returns consistent with the
target policy, and all of these would be exactly 1.

We can verify that the variance of the importance-sampling-scaled returns is infinite
in this example by a simple calculation. The variance of any random variable X is the
expected value of the deviation from its mean X, which can be written

VarlX] = E[(X - X)*| =E[X? - 2XX + X?] =E[X?] - X2,

Thus, if the mean is finite, as it is in our case, the variance is infinite if and only if the
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expectation of the square of the random variable is infinite. Thus, we need only show
that the expected square of the importance-sampling-scaled return is infinite:

2
H At\St
b(AS) ¢

To compute this expectation, we break it down into cases based on episode length and
termination. First note that, for any episode ending with the right action, the importance
sampling ratio is zero, because the target policy would never take this action; these
episodes thus contribute nothing to the expectation (the quantity in parenthesis will be
zero) and can be ignored. We need only consider episodes that involve some number
(possibly zero) of left actions that transition back to the nonterminal state, followed by a
left action transitioning to termination. All of these episodes have a return of 1, so the
G factor can be ignored. To get the expected square we need only consider each length
of episode, multiplying the probability of the episode’s occurrence by the square of its
importance-sampling ratio, and add these up:

2
1 1 .
=3 -0.1 <05> (the length 1 episode)
2
1 1 1 1
+ 3 -0.9- 3 0.1 <O5 05) (the length 2 episode)
1 1 1 1 1 1
--09---09- =01 ——— the length 3 episod
+2 2 2 (050505) (the length 3 episode)
+
o
:0.120.9’“-2’“-2: 02) 1.8" = oc. n
k=0

Exercise 5.6 What is the equation analogous to (5.6) for action values Q(s, a) instead of
state values V(s), again given returns generated using b? (|

Exercise 5.7 In learning curves such as those shown in Figure 5.3 error generally decreases
with training, as indeed happened for the ordinary importance-sampling method. But for
the weighted importance-sampling method error first increased and then decreased. Why
do you think this happened? O

Ezxercise 5.8 The results with Example 5.5 and shown in Figure 5.4 used a first-visit MC
method. Suppose that instead an every-visit MC method was used on the same problem.
Would the variance of the estimator still be infinite? Why or why not? ]
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5.6 Incremental Implementation

Monte Carlo prediction methods can be implemented incrementally, on an episode-by-
episode basis, using extensions of the techniques described in Chapter 2 (Section 2.4).
Whereas in Chapter 2 we averaged rewards, in Monte Carlo methods we average returns.
In all other respects exactly the same methods as used in Chapter 2 can be used for on-
policy Monte Carlo methods. For off-policy Monte Carlo methods, we need to separately
consider those that use ordinary importance sampling and those that use weighted
importance sampling.

In ordinary importance sampling, the returns are scaled by the importance sampling
ratio py.p)—1 (5.3), then simply averaged, as in (5.5). For these methods we can again
use the incremental methods of Chapter 2, but using the scaled returns in place of
the rewards of that chapter. This leaves the case of off-policy methods using weighted
importance sampling. Here we have to form a weighted average of the returns, and a
slightly different incremental algorithm is required.

Suppose we have a sequence of returns Gy, Ga, ..., G,_1, all starting in the same state
and each with a corresponding random weight W; (e.g., Wi = p;,.7¢,)—1). We wish to
form the estimate

n—1
w=1 WGy

k=1 Wi

and keep it up-to-date as we obtain a single additional return G,,. In addition to keeping
track of V,,, we must maintain for each state the cumulative sum C), of the weights given
to the first n returns. The update rule for V,, is

Wn

Vsl =V,
+1 + c.

{Gn _ Vn}, n>1, (5.8)

and
Cn+1 = Cn + Wn+17

where Cyp = 0 (and V; is arbitrary and thus need not be specified). The box on the
next page contains a complete episode-by-episode incremental algorithm for Monte Carlo
policy evaluation. The algorithm is nominally for the off-policy case, using weighted
importance sampling, but applies as well to the on-policy case just by choosing the
target and behavior policies as the same (in which case (7 = b), W is always 1). The
approximation @) converges to ¢, (for all encountered state—action pairs) while actions
are selected according to a potentially different policy, b.

Ezercise 5.9 Modify the algorithm for first-visit MC policy evaluation (Section 5.1) to
use the incremental implementation for sample averages described in Section 2.4. O

Ezercise 5.10 Derive the weighted-average update rule (5.8) from (5.7). Follow the
pattern of the derivation of the unweighted rule (2.3). O
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Off-policy MC prediction (policy evaluation) for estimating Q = ¢,

Input: an arbitrary target policy 7

Initialize, for all s € 8, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) <0

Loop forever (for each episode):

b + any policy with coverage of 7

Generate an episode following b: Sy, Ag, Ry,...,S7_1,Ar_1, Rt

G0

W1

Loop for each step of episode, t =T —1,T7—2,...,0, while W # 0:
G <~ vG + Ry
C(St, At) — C(St, At) + W
Q(St, Ar) < Q(St, Ar) + % (G — Q(S:, Ay)]

m(A¢|St)
W Wiiaisg

5.7 Off-policy Monte Carlo Control

We are now ready to present an example of the second class of learning control methods
we consider in this book: off-policy methods. Recall that the distinguishing feature of
on-policy methods is that they estimate the value of a policy while using it for control.
In off-policy methods these two functions are separated. The policy used to generate
behavior, called the behavior policy, may in fact be unrelated to the policy that is
evaluated and improved, called the target policy. An advantage of this separation is
that the target policy may be deterministic (e.g., greedy), while the behavior policy can
continue to sample all possible actions.

Off-policy Monte Carlo control methods use one of the techniques presented in the
preceding two sections. They follow the behavior policy while learning about and
improving the target policy. These techniques require that the behavior policy has a
nonzero probability of selecting all actions that might be selected by the target policy
(coverage). To explore all possibilities, we require that the behavior policy be soft (i.e.,
that it select all actions in all states with nonzero probability).

The box on the next page shows an off-policy Monte Carlo control method, based on
GPI and weighted importance sampling, for estimating 7, and g,. The target policy
T = T, is the greedy policy with respect to (), which is an estimate of ¢,. The behavior
policy b can be anything, but in order to assure convergence of 7 to the optimal policy, an
infinite number of returns must be obtained for each pair of state and action. This can be
assured by choosing b to be e-soft. The policy 7 converges to optimal at all encountered
states even though actions are selected according to a different soft policy b, which may
change between or even within episodes.
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Off-policy MC control, for estimating = ~ .,

Initialize, for all s € §, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) «+ 0
7(s) < argmax, Q(s,a) (with ties broken consistently)

Loop forever (for each episode):
b + any soft policy
Generate an episode using b: Sy, Ag, R1,...,57_1,Ar_1, Rr
G<+0
W1
Loop for each step of episode, t =T—-1,T-2,...,0:
G+ vG+ Ry
CY(St7 At) — C(St, At) + W
Q(St, Ar) + Q(Si, Ar) + orgray [G — Q(Sh, Ar)]
7(St) < argmax, Q(St,a)  (with ties broken consistently)
If Ay # 7(S;) then exit inner Loop (proceed to next episode)

1
W Weaisy

A potential problem is that this method learns only from the tails of episodes, when
all of the remaining actions in the episode are greedy. If nongreedy actions are common,
then learning will be slow, particularly for states appearing in the early portions of
long episodes. Potentially, this could greatly slow learning. There has been insufficient
experience with off-policy Monte Carlo methods to assess how serious this problem is. If
it is serious, the most important way to address it is probably by incorporating temporal-
difference learning, the algorithmic idea developed in the next chapter. Alternatively, if ~
is less than 1, then the idea developed in the next section may also help significantly.

Ezercise 5.11 In the boxed algorithm for off-policy MC control, you may have been

expecting the W update to have involved the importance-sampling ratio Z((::ttllgtt)) , but

instead it involves b(Tllst)' Why is this nevertheless correct? O

Exercise 5.12: Racetrack (programming) Consider driving a race car around a turn
like those shown in Figure 5.5. You want to go as fast as possible, but not so fast as
to run off the track. In our simplified racetrack, the car is at one of a discrete set of
grid positions, the cells in the diagram. The velocity is also discrete, a number of grid
cells moved horizontally and vertically per time step. The actions are increments to the
velocity components. Each may be changed by +1, —1, or 0 in each step, for a total of
nine (3 x 3) actions. Both velocity components are restricted to be nonnegative and less
than 5, and they cannot both be zero except at the starting line. Each episode begins
in one of the randomly selected start states with both velocity components zero and
ends when the car crosses the finish line. The rewards are —1 for each step until the car
crosses the finish line. If the car hits the track boundary, it is moved back to a random
position on the starting line, both velocity components are reduced to zero, and the
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Finish
line

Finish
line

Starting line Starting line

Figure 5.5: A couple of right turns for the racetrack task.

episode continues. Before updating the car’s location at each time step, check to see if
the projected path of the car intersects the track boundary. If it intersects the finish line,
the episode ends; if it intersects anywhere else, the car is considered to have hit the track
boundary and is sent back to the starting line. To make the task more challenging, with
probability 0.1 at each time step the velocity increments are both zero, independently of
the intended increments. Apply a Monte Carlo control method to this task to compute
the optimal policy from each starting state. Exhibit several trajectories following the
optimal policy (but turn the noise off for these trajectories). (|

5.8 *Discounting-aware Importance Sampling

The off-policy methods that we have considered so far are based on forming importance-
sampling weights for returns considered as unitary wholes, without taking into account
the returns’ internal structures as sums of discounted rewards. We now briefly consider
cutting-edge research ideas for using this structure to significantly reduce the variance of
off-policy estimators.

For example, consider the case where episodes are long and -y is significantly less than
1. For concreteness, say that episodes last 100 steps and that v = 0. The return from
time 0 will then be just Gy = Ry, but its importance sampling ratio will be a product of

7(Ao|So) w(A1|S1)  m(Ago|Ses)
100 factors, 5375y B(A[5,) " B Aso|So0) °

will be scaled by the entire product, but it is really only necessary to scale by the first

factor, by %. The other 99 factors Z((ﬁll‘lgll)) ggﬁ::“gg:)) are irrelevant because

after the first reward the return has already been determined. These later factors are
all independent of the return and of expected value 1; they do not change the expected
update, but they add enormously to its variance. In some cases they could even make the

In ordinary importance sampling, the return
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variance infinite. Let us now consider an idea for avoiding this large extraneous variance.

The essence of the idea is to think of discounting as determining a probability of
termination or, equivalently, a degree of partial termination. For any v € [0,1), we can
think of the return G as partly terminating in one step, to the degree 1 — -, producing
a return of just the first reward, R;, and as partly terminating after two steps, to the
degree (1 — )y, producing a return of Ry + Ry, and so on. The latter degree corresponds
to terminating on the second step, 1 — 7, and not having already terminated on the
first step, 7. The degree of termination on the third step is thus (1 — v)vy?2, with the v2
reflecting that termination did not occur on either of the first two steps. The partial
returns here are called flat partial returns:

G = Riy1 + Riyo + -+ + Ry, 0<t<h<T,

where “flat” denotes the absence of discounting, and “partial” denotes that these returns
do not extend all the way to termination but instead stop at h, called the horizon (and T
is the time of termination of the episode). The conventional full return G can be viewed
as a sum of flat partial returns as suggested above as follows:
Gy = Rip1 +vRiyo + ’72Rt+3 + -+ ’}/TitilRT
=(1—7)Rena
+ (1 =9)7 (Reg1 + Resa)
+ (1 =7)7° (Reg1 + Risa + Riys)

+ (1= (Riy1+ Reya+ - + Rr1)

+ ’YTitil (Rt+1 + Rt+2 R RT)
T—1
= (1 _7) Z /yh_t_lét:h + ’YT_t_lét:T~
h=t+1
Now we need to scale the flat partial returns by an importance sampling ratio that is
similarly truncated. As Gy, only involves rewards up to a horizon h, we only need the
ratio of the probabilities up to h. We define an ordinary importance-sampling estimator,
analogous to (5.5), as

) ZtE‘T(s) ((1 —) ngﬁ Y 1 G + ’YT(t)_t_lpt:T(t)—lét:T(t))

Vi(s) . (5.9)
[T ()l
and a weighted importance-sampling estimator, analogous to (5.6), as
DteT(s) ((1 =) ZZQ: Yt o1 Gn + ’VT(t)iti1pt:T(t)—1Gt:T(t)>
Vis) = . (5.10)

2 teT(s) ((1 — ) Sty ’YT(t)_t_lpt:T(t)71>

We call these two estimators discounting-aware importance sampling estimators. They
take into account the discount rate but have no effect (are the same as the off-policy
estimators from Section 5.5) if v = 1.
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5.9 *Per-decision Importance Sampling

There is one more way in which the structure of the return as a sum of rewards can be
taken into account in off-policy importance sampling, a way that may be able to reduce
variance even in the absence of discounting (that is, even if y=1). In the off-policy
estimators (5.5) and (5.6), each term of the sum in the numerator is itself a sum:

pe1—1Gt = pr.17-1 (Rt+1 +YRypo + -+ ’VT_t_lRT)

T—t—

= prr-1Rip1 +yper—1 B2+ +y Yovr 1Ry, (5.11)

The off-policy estimators rely on the expected values of these terms, which can be written
in a simpler way. Note that each sub-term of (5.11) is a product of a random reward and
a random importance-sampling ratio. For example, the first sub-term can be written,
using (5.3), as

ot Resy — T(Ae|St) m(Aps1[Sev1) T(Arg2|Siq2)  m(Ar—1|ST-1)
P T (A S b(Ari|Ser1) b(AryalSer2)  b(Ar—1[ST_1)

Ritr. (5.12)

Of all these factors, one might suspect that only the first and the last (the reward)
are related; all the others are for events that occurred after the reward. Moreover, the
expected value of all these other factors is one:

7(Ag|Sk CL|5k) _ _
]E[ Aklsk] Zb al Sk) )—Z(L:W(cdsk)—l. (5.13)

With a few more steps, one can show that, as suspected, all of these other factors have
no effect in expectation, in other words, that

Elpt.r—1Ri+1] = Elpre Ret1] - (5.14)

If we repeat this process for the kth sub-term of (5.11), we get

]E[pt:TflRt+k] = E[pt:tJrkflRtJrk] .

It follows then that the expectation of our original term (5.11) can be written
Elpi.r-1Gi = E [ét} )

where

T—t—1

ét = pe:tRep1 + ypeer1Beqo + 72Pt:t+2Rt+3 +--+y prT—1RT.

We call this idea per-decision importance sampling. It follows immediately that there is
an alternate importance-sampling estimator, with the same unbiased expectation (in the
first-visit case) as the ordinary-importance-sampling estimator (5.5), using G:

Zte‘:r )

V)= =)

‘ , (5.15)
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which we might expect to sometimes be of lower variance.

Is there a per-decision version of weighted importance sampling? This is less clear. So
far, all the estimators that have been proposed for this that we know of are not consistent
(that is, they do not converge to the true value with infinite data).

*Exercise 5.13 Show the steps to derive (5.14) from (5.12). O

*Exercise 5.14 Modify the algorithm for off-policy Monte Carlo control (page 111) to use
the idea of the truncated weighted-average estimator (5.10). Note that you will first need
to convert this equation to action values. O

5.10 Summary

The Monte Carlo methods presented in this chapter learn value functions and optimal
policies from experience in the form of sample episodes. This gives them at least three
kinds of advantages over DP methods. First, they can be used to learn optimal behavior
directly from interaction with the environment, with no model of the environment’s
dynamics. Second, they can be used with simulation or sample models. For surprisingly
many applications it is easy to simulate sample episodes even though it is difficult to
construct the kind of explicit model of transition probabilities required by DP methods.
Third, it is easy and efficient to focus Monte Carlo methods on a small subset of the states.
A region of special interest can be accurately evaluated without going to the expense of
accurately evaluating the rest of the state set (we explore this further in Chapter 8).

A fourth advantage of Monte Carlo methods, which we discuss later in the book, is
that they may be less harmed by violations of the Markov property. This is because they
do not update their value estimates on the basis of the value estimates of successor states.
In other words, it is because they do not bootstrap.

In designing Monte Carlo control methods we have followed the overall schema of
generalized policy iteration (GPI) introduced in Chapter 4. GPI involves interacting
processes of policy evaluation and policy improvement. Monte Carlo methods provide an
alternative policy evaluation process. Rather than use a model to compute the value of
each state, they simply average many returns that start in the state. Because a state’s
value is the expected return, this average can become a good approximation to the
value. In control methods we are particularly interested in approximating action-value
functions, because these can be used to improve the policy without requiring a model of
the environment’s transition dynamics. Monte Carlo methods intermix policy evaluation
and policy improvement steps on an episode-by-episode basis, and can be incrementally
implemented on an episode-by-episode basis.

Maintaining sufficient exploration is an issue in Monte Carlo control methods. It is
not enough just to select the actions currently estimated to be best, because then no
returns will be obtained for alternative actions, and it may never be learned that they
are actually better. One approach is to ignore this problem by assuming that episodes
begin with state—action pairs randomly selected to cover all possibilities. Such exploring
starts can sometimes be arranged in applications with simulated episodes, but are unlikely
in learning from real experience. In on-policy methods, the agent commits to always
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exploring and tries to find the best policy that still explores. In off-policy methods, the
agent also explores, but learns a deterministic optimal policy that may be unrelated to
the policy followed.

Off-policy prediction refers to learning the value function of a target policy from data
generated by a different behavior policy. Such learning methods are based on some form
of importance sampling, that is, on weighting returns by the ratio of the probabilities of
taking the observed actions under the two policies, thereby transforming their expectations
from the behavior policy to the target policy. Ordinary importance sampling uses a
simple average of the weighted returns, whereas weighted importance sampling uses a
weighted average. Ordinary importance sampling produces unbiased estimates, but has
larger, possibly infinite, variance, whereas weighted importance sampling always has
finite variance and is preferred in practice. Despite their conceptual simplicity, off-policy
Monte Carlo methods for both prediction and control remain unsettled and are a subject
of ongoing research.

The Monte Carlo methods treated in this chapter differ from the DP methods treated
in the previous chapter in two major ways. First, they operate on sample experience,
and thus can be used for direct learning without a model. Second, they do not bootstrap.
That is, they do not update their value estimates on the basis of other value estimates.
These two differences are not tightly linked, and can be separated. In the next chapter
we consider methods that learn from experience, like Monte Carlo methods, but also
bootstrap, like DP methods.

Bibliographical and Historical Remarks

The term “Monte Carlo” dates from the 1940s, when physicists at Los Alamos devised
games of chance that they could study to help understand complex physical phenomena
relating to the atom bomb. Coverage of Monte Carlo methods in this sense can be found
in several textbooks (e.g., Kalos and Whitlock, 1986; Rubinstein, 1981).

5.1-2 Singh and Sutton (1996) distinguished between every-visit and first-visit MC
methods and proved results relating these methods to reinforcement learning
algorithms. The blackjack example is based on an example used by Widrow,
Gupta, and Maitra (1973). The soap bubble example is a classical Dirichlet
problem whose Monte Carlo solution was first proposed by Kakutani (1945; see
Hersh and Griego, 1969; Doyle and Snell, 1984).

Barto and Duff (1994) discussed policy evaluation in the context of classical
Monte Carlo algorithms for solving systems of linear equations. They used the
analysis of Curtiss (1954) to point out the computational advantages of Monte
Carlo policy evaluation for large problems.

5.3—4 Monte Carlo ES was introduced in the 1998 edition of this book. That may have
been the first explicit connection between Monte Carlo estimation and control
methods based on policy iteration. An early use of Monte Carlo methods to
estimate action values in a reinforcement learning context was by Michie and
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5.5

5.7

5.8

5.9

Chambers (1968). In pole balancing (page 56), they used averages of episode
durations to assess the worth (expected balancing “life”) of each possible action
in each state, and then used these assessments to control action selections. Their
method is similar in spirit to Monte Carlo ES with every-visit MC estimates.
Narendra and Wheeler (1986) studied a Monte Carlo method for ergodic finite
Markov chains that used the return accumulated between successive visits to the
same state as a reward for adjusting a learning automaton’s action probabilities.

Efficient off-policy learning has become recognized as an important challenge
that arises in several fields. For example, it is closely related to the idea of
“Interventions” and “counterfactuals” in probabilistic graphical (Bayesian) models
(e.g., Pearl, 1995; Balke and Pearl, 1994). Off-policy methods using importance
sampling have a long history and yet still are not well understood. Weighted
importance sampling, which is also sometimes called normalized importance
sampling (e.g., Koller and Friedman, 2009), is discussed by Rubinstein (1981),
Hesterberg (1988), Shelton (2001), and Liu (2001) among others.

The target policy in off-policy learning is sometimes referred to in the literature
as the “estimation” policy, as it was in the first edition of this book.

The racetrack exercise is adapted from Barto, Bradtke, and Singh (1995), and
from Gardner (1973).

Our treatment of the idea of discounting-aware importance sampling is based on
the analysis of Sutton, Mahmood, Precup, and van Hasselt (2014). It has been
worked out most fully to date by Mahmood (2017; Mahmood, van Hasselt, and
Sutton, 2014).

Per-decision importance sampling was introduced by Precup, Sutton, and Singh
(2000). They also combined off-policy learning with temporal-difference learning,
eligibility traces, and approximation methods, introducing subtle issues that we
consider in later chapters.






Chapter 6

Temporal-Difference Learning

If one had to identify one idea as central and novel to reinforcement learning, it would
undoubtedly be temporal-difference (TD) learning. TD learning is a combination of
Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte Carlo methods,
TD methods can learn directly from raw experience without a model of the environment’s
dynamics. Like DP, TD methods update estimates based in part on other learned
estimates, without waiting for a final outcome (they bootstrap). The relationship between
TD, DP, and Monte Carlo methods is a recurring theme in the theory of reinforcement
learning; this chapter is the beginning of our exploration of it. Before we are done, we
will see that these ideas and methods blend into each other and can be combined in many
ways. In particular, in Chapter 7 we introduce n-step algorithms, which provide a bridge
from TD to Monte Carlo methods, and in Chapter 12 we introduce the TD()) algorithm,
which seamlessly unifies them.

As usual, we start by focusing on the policy evaluation or prediction problem, the
problem of estimating the value function v, for a given policy w. For the control problem
(finding an optimal policy), DP, TD, and Monte Carlo methods all use some variation of
generalized policy iteration (GPI). The differences in the methods are primarily differences
in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem. Given
some experience following a policy m, both methods update their estimate V' of v, for
the nonterminal states S; occurring in that experience. Roughly speaking, Monte Carlo
methods wait until the return following the visit is known, then use that return as a
target for V(S). A simple every-visit Monte Carlo method suitable for nonstationary
environments is

V(S1) ¢ V(S) + |G~ V(S)], (6.1)

119
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where G is the actual return following time ¢, and « is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-a MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V(S;) (only then is
G known), TD methods need to wait only until the next time step. At time ¢ + 1 they
immediately form a target and make a useful update using the observed reward R;;; and
the estimate V' (S¢4+1). The simplest TD method makes the update

V(St) < V(Se) + a|Ri1 + 7V (Se41) — V(S) (6.2)

immediately on transition to S¢y; and receiving Ry 1. In effect, the target for the Monte
Carlo update is Gy, whereas the target for the TD update is Ry1 + vV (S¢41). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(\) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size « € (0, 1]
Initialize V (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A < action given by 7 for §
Take action A, observe R, S’
V(S) < V(S) + a[R +V(S") — V(S)]
S+ 9

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

vr(8) = EL[Gt | Sp=5] (6.3)
=E [Rir1 +vGet1 | Si=¢] (from (3.9))
= Eﬂ[Rt+1 + 'Y'U'n'(StJrl) | St :S] . (64)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
U (St+1) 18 not known and the current estimate, V/(S11), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V' instead of the true v,. Thus, TD methods combine the sampling of
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Monte Carlo with the bootstrapping of DP. As we shall see, with care and imagination
this can take us a long way toward obtaining the advantages of both Monte Carlo and
DP methods.

Shown to the right is the backup diagram for tabular TD(0). The value
estimate for the state node at the top of the backup diagram is updated on
the basis of the one sample transition from it to the immediately following ?

state. We refer to TD and Monte Carlo updates as sample updates because I
they involve looking ahead to a sample successor state (or state—action pair),
using the value of the successor and the reward along the way to compute a O

backed-up value, and then updating the value of the original state (or state— TD(0)
action pair) accordingly. Sample updates differ from the expected updates

of DP methods in that they are based on a single sample successor rather than on a
complete distribution of all possible successors.

Finally, note that the quantity in brackets in the TD(0) update is a sort of error,
measuring the difference between the estimated value of S; and the better estimate
Riy1 4+ vV (St41). This quantity, called the TD error, arises in various forms throughout
reinforcement learning:

0t = Rep1 + YV (St41) = V(S). (6.5)

Notice that the TD error at each time is the error in the estimate made at that time.
Because the TD error depends on the next state and next reward, it is not actually
available until one time step later. That is, d; is the error in V(S;), available at time
t + 1. Also note that if the array V' does not change during the episode (as it does not in
Monte Carlo methods), then the Monte Carlo error can be written as a sum of TD errors:

Gy —V(St) = Riy1 +7Giy1 — V(Se) + YV (Si41) — 7V (St41) (from (3.9))
=0+ ’Y(Gt+1 - V(St+1))
=0y + V041 + 77 (G2 — V(Si42))
=0 + Y01 + V2042 + -+ oo + 4T (G — V(ST))
=6+ Y011+ 7024+ o +47 (0 -0)

=) AFlg,. (6.6)

This identity is not exact if V' is updated during the episode (as it is in TD(0)), but if the
step size is small then it may still hold approximately. Generalizations of this identity
play an important role in the theory and algorithms of temporal-difference learning.

Ezercise 6.1 If V changes during the episode, then (6.6) only holds approximately; what
would the difference be between the two sides? Let V; denote the array of state values
used at time ¢ in the TD error (6.5) and in the TD update (6.2). Redo the derivation
above to determine the additional amount that must be added to the sum of TD errors
in order to equal the Monte Carlo error. O
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Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your office, you note the time,
the day of week, the weather, and anything else that might be relevant. Say on this
Friday you are leaving at exactly 6 o’clock, and you estimate that it will take 30 minutes
to get home. As you reach your car it is 6:05, and you notice it is starting to rain. Traffic
is often slower in the rain, so you reestimate that it will take 35 minutes from then, or a
total of 40 minutes. Fifteen minutes later you have completed the highway portion of
your journey in good time. As you exit onto a secondary road you cut your estimate of
total travel time to 35 minutes. Unfortunately, at this point you get stuck behind a slow
truck, and the road is too narrow to pass. You end up having to follow the truck until
you turn onto the side street where you live at 6:40. Three minutes later you are home.
The sequence of states, times, and predictions is thus as follows:

Elapsed Time Predicted Predicted

State (minutes) Time to Go  Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43

The rewards in this example are the elapsed times on each leg of the journey.! We are
not discounting (y = 1), and thus the return for each state is the actual time to go from
that state. The value of each state is the expected time to go. The second column of
numbers gives the current estimated value for each state encountered.

A simple way to view the operation of Monte Carlo methods is to plot the predicted
total time (the last column) over the sequence, as in Figure 6.1 (left). The red arrows
show the changes in predictions recommended by the constant-a MC method (6.1), for
a = 1. These are exactly the errors between the estimated value (predicted time to go)
in each state and the actual return (actual time to go). For example, when you exited
the highway you thought it would take only 15 minutes more to get home, but in fact it
took 23 minutes. Equation 6.1 applies at this point and determines an increment in the
estimate of time to go after exiting the highway. The error, G; — V(S;), at this time is
eight minutes. Suppose the step-size parameter, «, is 1/2. Then the predicted time to go
after exiting the highway would be revised upward by four minutes as a result of this
experience. This is probably too large a change in this case; the truck was probably just
an unlucky break. In any event, the change can only be made offline, that is, after you
have reached home. Only at this point do you know any of the actual returns.

Is it necessary to wait until the final outcome is known before learning can begin?
Suppose on another day you again estimate when leaving your office that it will take 30
minutes to drive home, but then you become stuck in a massive traffic jam. Twenty-five
minutes after leaving the office you are still bumper-to-bumper on the highway. You now

LIf this were a control problem with the objective of minimizing travel time, then we would of course
make the rewards the negative of the elapsed time. But because we are concerned here only with
prediction (policy evaluation), we can keep things simple by using positive numbers.



6.1. TD Prediction 123

45
___actual outcome_ ____ actual
outcome
Predicted
total
travel 55
time
304
T T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office  car highway road street home
Situation Situation

Figure 6.1: Changes recommended in the driving home example by Monte Carlo methods (left)
and TD methods (right).

estimate that it will take another 25 minutes to get home, for a total of 50 minutes. As
you wait in traffic, you already know that your initial estimate of 30 minutes was too
optimistic. Must you wait until you get home before increasing your estimate for the
initial state? According to the Monte Carlo approach you must, because you don’t yet
know the true return.

According to a TD approach, on the other hand, you would learn immediately, shifting
your initial estimate from 30 minutes toward 50. In fact, each estimate would be shifted
toward the estimate that immediately follows it. Returning to our first day of driving,
Figure 6.1 (right) shows the changes in the predictions recommended by the TD rule
(6.2) (these are the changes made by the rule if @ = 1). Each error is proportional to the
change over time of the prediction, that is, to the temporal differences in predictions.

Besides giving you something to do while waiting in traffic, there are several computa-
tional reasons why it is advantageous to learn based on your current predictions rather
than waiting until termination when you know the actual return. We briefly discuss some
of these in the next section. [ ]

Ezercise 6.2 This is an exercise to help develop your intuition about why TD methods
are often more efficient than Monte Carlo methods. Consider the driving home example
and how it is addressed by TD and Monte Carlo methods. Can you imagine a scenario
in which a TD update would be better on average than a Monte Carlo update? Give
an example scenario—a description of past experience and a current state—in which
you would expect the TD update to be better. Here’s a hint: Suppose you have lots of
experience driving home from work. Then you move to a new building and a new parking
lot (but you still enter the highway at the same place). Now you are starting to learn
predictions for the new building. Can you see why TD updates are likely to be much
better, at least initially, in this case? Might the same sort of thing happen in the original
scenario? |
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6.2 Advantages of TD Prediction Methods

TD methods update their estimates based in part on other estimates. They learn a
guess from a guess—they bootstrap. Is this a good thing to do? What advantages do
TD methods have over Monte Carlo and DP methods? Developing and answering such
questions will take the rest of this book and more. In this section we briefly anticipate
some of the answers.

Obviously, TD methods have an advantage over DP methods in that they do not
require a model of the environment, of its reward and next-state probability distributions.

The next most obvious advantage of TD methods over Monte Carlo methods is that
they are naturally implemented in an online, fully incremental fashion. With Monte
Carlo methods one must wait until the end of an episode, because only then is the return
known, whereas with TD methods one need wait only one time step. Surprisingly often
this turns out to be a critical consideration. Some applications have very long episodes, so
that delaying all learning until the end of the episode is too slow. Other applications are
continuing tasks and have no episodes at all. Finally, as we noted in the previous chapter,
some Monte Carlo methods must ignore or discount episodes on which experimental
actions are taken, which can greatly slow learning. TD methods are much less susceptible
to these problems because they learn from each transition regardless of what subsequent
actions are taken.

But are TD methods sound? Certainly it is convenient to learn one guess from the
next, without waiting for an actual outcome, but can we still guarantee convergence
to the correct answer? Happily, the answer is yes. For any fixed policy w, TD(0) has
been proved to converge to vy, in the mean for a constant step-size parameter if it is
sufficiently small, and with probability 1 if the step-size parameter decreases according to
the usual stochastic approximation conditions (2.7). Most convergence proofs apply only
to the table-based case of the algorithm presented above (6.2), but some also apply to
the case of general linear function approximation. These results are discussed in a more
general setting in Chapter 9.

If both TD and Monte Carlo methods converge asymptotically to the correct predictions,
then a natural next question is “Which gets there first?” In other words, which method
learns faster? Which makes the more efficient use of limited data? At the current time
this is an open question in the sense that no one has been able to prove mathematically
that one method converges faster than the other. In fact, it is not even clear what is the
most appropriate formal way to phrase this question! In practice, however, TD methods
have usually been found to converge faster than constant-aw MC methods on stochastic
tasks, as illustrated in Example 6.2.
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Example 6.2 Random Walk

In this example we empirically compare the prediction abilities of TD(0) and
constant-o MC when applied to the following Markov reward process:

W=~ (A)="=(B)="m(C)="»(D)="(E)— =

start

A Markov reward process, or MRP, is a Markov decision process without actions.
We will often use MRPs when focusing on the prediction problem, in which there is
no need to distinguish the dynamics due to the environment from those due to the
agent. In this MRP, all episodes start in the center state, C, then proceed either left
or right by one state on each step, with equal probability. Episodes terminate either
on the extreme left or the extreme right. When an episode terminates on the right,
a reward of +1 occurs; all other rewards are zero. For example, a typical episode
might consist of the following state-and-reward sequence: C,0,B,0,C,0,D,0,E, 1.
Because this task is undiscounted, the true value of each state is the probability of
terminating on the right if starting from that state. Thus, the true value of the
center state is v;(C) = 0.5. The true values of all the states, A through E, are

123 4 5
6 6060 and g
0.8 Estimated 0.25 - Empirical RMS error,
value 100 averaged over states
10 0.2
0.6
(1)/ \ 0.15-
0.4
True 0.1-
values
0.2 4
0.05 —|
o=.05
0 T T T T 1 0 T T T 1
A B C D E 0 25 50 75 100
State Walks / Episodes

The left graph above shows the values learned after various numbers of episodes
on a single run of TD(0). The estimates after 100 episodes are about as close as
they ever come to the true values—with a constant step-size parameter (o = 0.1
in this example), the values fluctuate indefinitely in response to the outcomes
of the most recent episodes. The right graph shows learning curves for the two
methods for various values of a. The performance measure shown is the root
mean-squared (RMS) error between the value function learned and the true value
function, averaged over the five states, then averaged over 100 runs. In all cases the
approximate value function was initialized to the intermediate value V' (s) = 0.5, for
all s. The TD method was consistently better than the MC method on this task.
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Exercise 6.3 From the results shown in the left graph of the random walk example it
appears that the first episode results in a change in only V(A). What does this tell you
about what happened on the first episode? Why was only the estimate for this one state
changed? By exactly how much was it changed? O

Exercise 6.4 The specific results shown in the right graph of the random walk example
are dependent on the value of the step-size parameter, a. Do you think the conclusions
about which algorithm is better would be affected if a wider range of «a values were used?
Is there a different, fixed value of a at which either algorithm would have performed
significantly better than shown? Why or why not? g

*FEzercise 6.5 In the right graph of the random walk example, the RMS error of the
TD method seems to go down and then up again, particularly at high a’s. What could
have caused this? Do you think this always occurs, or might it be a function of how the
approximate value function was initialized? |
Ezercise 6.6 In Example 6.2 we stated that the true values for the random walk example
are +,2 3 2 and 2, for states A through E. Describe at least two different ways that
these could have been computed. Which would you guess we actually used? Why? O

6.3 Optimality of TD(0)

Suppose there is available only a finite amount of experience, say 10 episodes or 100
time steps. In this case, a common approach with incremental learning methods is to
present the experience repeatedly until the method converges upon an answer. Given an
approximate value function, V, the increments specified by (6.1) or (6.2) are computed
for every time step t at which a nonterminal state is visited, but the value function is
changed only once, by the sum of all the increments. Then all the available experience is
processed again with the new value function to produce a new overall increment, and so
on, until the value function converges. We call this batch updating because updates are
made only after processing each complete batch of training data.

Under batch updating, TD(0) converges deterministically to a single answer independent
of the step-size parameter, «, as long as « is chosen to be sufficiently small. The constant-
a MC method also converges deterministically under the same conditions, but to a
different answer. Understanding these two answers will help us understand the difference
between the two methods. Under normal updating the methods do not move all the way
to their respective batch answers, but in some sense they take steps in these directions.
Before trying to understand the two answers in general, for all possible tasks, we first
look at a few examples.

Example 6.3: Random walk under batch updating Batch-updating versions of
TD(0) and constant-a MC were applied as follows to the random walk prediction example
(Example 6.2). After each new episode, all episodes seen so far were treated as a batch.
They were repeatedly presented to the algorithm, either TD(0) or constant-ow MC, with
« sufficiently small that the value function converged. The resulting value function was
then compared with v,, and the average root mean-squared error across the five states
(and across 100 independent repetitions of the whole experiment) was plotted to obtain
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the learning curves shown in Figure 6.2. Note that the batch TD method was consistently
better than the batch Monte Carlo method.

Under batch training, constant-a
MC converges to values, V(s), that s
are sample averages of the actual re- BATCH TRAINING
turns experienced after visiting each
state s. These are optimal estimates
in the sense that they minimize the ~RMS error,
mean-squared error from the actual averaged
returns in the training set. In this over states
sense it is surprising that the batch
TD method was able to perform

better according to the root mean- 0 , , , |
squared error measure shown in the 0 25 50 75 100
figure to the right. How is it that Walks / Episodes

batch TD was able to perform better

than this optimal method? The an- Figure 6.2: Performance of TD(0) and constant-a
swer is that the Monte Carlo method MC under batch training on the random walk task.
is optimal only in a limited way, and

that TD is optimal in a way that is more relevant to predicting returns. [ ]

Example 6.4: You are the Predictor Place yourself now in the role of the predictor
of returns for an unknown Markov reward process. Suppose you observe the following
eight episodes:

A,0,B.0
B,1

B,1
B,1

W“UU“UJUU
O = ==

) )

This means that the first episode started in state A, transitioned to B with a reward of
0, and then terminated from B with a reward of 0. The other seven episodes were even
shorter, starting from B and terminating immediately. Given this batch of data, what
would you say are the optimal predictions, the best values for the estimates V(A) and
V(B)? Everyone would probably agree that the optimal value for V(B) is %, because six
out of the eight times in state B the process terminated immediately with a return of 1,
and the other two times in B the process terminated immediately with a return of 0.

But what is the optimal value for the estimate V(A) given this data? Here there are
two reasonable answers. One is to observe that 100% of the
times the process was in state A it traversed immediately to
B (with a reward of 0); and because we have already decided
that B has value %, therefore A must have value % as well. F=0
One way of viewing this answer is that it is based on first @W
modeling the Markov process, in this case as shown to the
right, and then computing the correct estimates given the

3

model, which indeed in this case gives V(A) = 5. This is
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also the answer that batch TD(0) gives.

The other reasonable answer is simply to observe that we have seen A once and the
return that followed it was 0; we therefore estimate V' (A) as 0. This is the answer that
batch Monte Carlo methods give. Notice that it is also the answer that gives minimum
squared error on the training data. In fact, it gives zero error on the data. But still we
expect the first answer to be better. If the process is Markov, we expect that the first
answer will produce lower error on future data, even though the Monte Carlo answer is
better on the existing data. [ ]

Example 6.4 illustrates a general difference between the estimates found by batch
TD(0) and batch Monte Carlo methods. Batch Monte Carlo methods always find the
estimates that minimize mean-squared error on the training set, whereas batch TD(0)
always finds the estimates that would be exactly correct for the maximum-likelihood
model of the Markov process. In general, the mazimum-likelihood estimate of a parameter
is the parameter value whose probability of generating the data is greatest. In this case,
the maximum-likelihood estimate is the model of the Markov process formed in the
obvious way from the observed episodes: the estimated transition probability from i to j
is the fraction of observed transitions from ¢ that went to j, and the associated expected
reward is the average of the rewards observed on those transitions. Given this model,
we can compute the estimate of the value function that would be exactly correct if the
model were exactly correct. This is called the certainty-equivalence estimate because it
is equivalent to assuming that the estimate of the underlying process was known with
certainty rather than being approximated. In general, batch TD(0) converges to the
certainty-equivalence estimate.

This helps explain why TD methods converge more quickly than Monte Carlo methods.
In batch form, TD(0) is faster than Monte Carlo methods because it computes the
true certainty-equivalence estimate. This explains the advantage of TD(0) shown in the
batch results on the random walk task (Figure 6.2). The relationship to the certainty-
equivalence estimate may also explain in part the speed advantage of nonbatch TD(0)
(e.g., Example 6.2, page 125, right graph). Although the nonbatch methods do not achieve
either the certainty-equivalence or the minimum squared-error estimates, they can be
understood as moving roughly in these directions. Nonbatch TD(0) may be faster than
constant-a MC because it is moving toward a better estimate, even though it is not
getting all the way there. At the current time nothing more definite can be said about
the relative efficiency of online TD and Monte Carlo methods.

Finally, it is worth noting that although the certainty-equivalence estimate is in some
sense an optimal solution, it is almost never feasible to compute it directly. If n = |8] is
the number of states, then just forming the maximum-likelihood estimate of the process
may require on the order of n? memory, and computing the corresponding value function
requires on the order of n® computational steps if done conventionally. In these terms it
is indeed striking that TD methods can approximate the same solution using memory
no more than order n and repeated computations over the training set. On tasks with
large state spaces, TD methods may be the only feasible way of approximating the
certainty-equivalence solution.

*Exercise 6.7 Design an off-policy version of the TD(0) update that can be used with
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arbitrary target policy 7w and covering behavior policy b, using at each step ¢ the importance
sampling ratio ps.¢ (5.3). O

6.4 Sarsa: On-policy TD Control

We turn now to the use of TD prediction methods for the control problem. As usual, we
follow the pattern of generalized policy iteration (GPI), only this time using TD methods
for the evaluation or prediction part. As with Monte Carlo methods, we face the need to
trade off exploration and exploitation, and again approaches fall into two main classes:
on-policy and off-policy. In this section we present an on-policy TD control method.

The first step is to learn an action-value function rather than a state-value function.
In particular, for an on-policy method we must estimate ¢, (s, a) for the current behavior
policy 7 and for all states s and actions a. This can be done using essentially the same TD
method described above for learning v,. Recall that an episode consists of an alternating
sequence of states and state—action pairs:

e . @ RHI Rt+2 RI+3 ...
Ay A Ao Atz

In the previous section we considered transitions from state to state and learned the
values of states. Now we consider transitions from state—action pair to state—action pair,
and learn the values of state—action pairs. Formally these cases are identical: they are
both Markov chains with a reward process. The theorems assuring the convergence of
state values under TD(0) also apply to the corresponding algorithm for action values:

Q(St, Ar) + Q(S, Ap) + | Rep1 +vQ(St41, Ar1) — Q(Sh, At)]

(6.7)

This update is done after every transition from a nonterminal state S;. If

S¢r1 is terminal, then Q(S¢+1, A¢r1) is defined as zero. This rule uses every I

element of the quintuple of events, (S, Ay, Ryy1, St+1, Ai+1), that make up a

transition from one state—action pair to the next. This quintuple gives rise to

the name Sarsa for the algorithm. The backup diagram for Sarsa is as shown L4

to the right. Sarsa
It is straightforward to design an on-policy control algorithm based on the Sarsa

prediction method. As in all on-policy methods, we continually estimate ¢, for the

behavior policy 7, and at the same time change 7 toward greediness with respect to ¢.

The general form of the Sarsa control algorithm is given in the box on the next page.
The convergence properties of the Sarsa algorithm depend on the nature of the policy’s

dependence on ). For example, one could use e-greedy or e-soft policies. Sarsa converges

with probability 1 to an optimal policy and action-value function as long as all state—action

pairs are visited an infinite number of times and the policy converges in the limit to

the greedy policy (which can be arranged, for example, with e-greedy policies by setting

e=1/t).

Ezercise 6.8 Show that an action-value version of (6.6) holds for the action-value form

of the TD error §; = Ry11 + vQ(St+1, A1) — Q(S, Ay), again assuming that the values

don’t change from step to step. O
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Sarsa (on-policy TD control) for estimating Q = g.

Algorithm parameters: step size « € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S. A) « Q(S, A) + a[R+1Q(S, 4') — Q(S, A)]
S+ S A A
until S is terminal

Example 6.5: Windy Gridworld Shown inset below is a standard gridworld, with
start and goal states, but with one difference: there is a crosswind running upward
through the middle of the grid. The actions are the standard four—up, down, right,
and left—but in the middle region the resultant next states are shifted upward by a
“wind,” the strength of which varies from column to column. The strength of the wind
is given below each column, in num-
ber of cells shifted upward. For ex- 170 =
ample, if you are one cell to the 150 ! i
right of the goal, then the action ‘_I_’
left takes you to the cell just above i S
the goal. This is an undiscounted \ Actions
episodic task, with constant rewards
of —1 until the goal state is reached.
The graph to the right shows the 30
results of applying e-greedy Sarsa to
this task, with ¢ = 0.1, o = 0.5,
and the initial values Q(s,a) = 0
for all s,a. The increasing slope of
the graph shows that the goal was Time steps
reached more quickly over time. By
8000 time steps, the greedy policy was long since optimal (a trajectory from it is shown
inset); continued e-greedy exploration kept the average episode length at about 17 steps,
two more than the minimum of 15. Note that Monte Carlo methods cannot easily be used
here because termination is not guaranteed for all policies. If a policy was ever found
that caused the agent to stay in the same state, then the next episode would never end.
Online learning methods such as Sarsa do not have this problem because they quickly
learn during the episode that such policies are poor, and switch to something else. [ ]
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Ezxercise 6.9: Windy Gridworld with King’s Moves (programming) Re-solve the windy
gridworld assuming eight possible actions, including the diagonal moves, rather than the
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usual four. How much better can you do with the extra actions? Can you do even better
by including a ninth action that causes no movement at all other than that caused by
the wind? 0O

Ezercise 6.10: Stochastic Wind (programming) Re-solve the windy gridworld task with
King’s moves, assuming that the effect of the wind, if there is any, is stochastic, sometimes
varying by 1 from the mean values given for each column. That is, a third of the time
you move exactly according to these values, as in the previous exercise, but also a third
of the time you move one cell above that, and another third of the time you move one
cell below that. For example, if you are one cell to the right of the goal and you move
left, then one-third of the time you move one cell above the goal, one-third of the time
you move two cells above the goal, and one-third of the time you move to the goal. [

6.5 Q-learning: Off-policy TD Control

One of the early breakthroughs in reinforcement learning was the development of an
off-policy TD control algorithm known as @-learning (Watkins, 1989), defined by

Q(St, Ar) = Q(S1 A1) + o Russ +7maxQ(Sii1,0) — Q(Si, Ar)]. (68)

In this case, the learned action-value function, (), directly approximates q,, the optimal
action-value function, independent of the policy being followed. This dramatically
simplifies the analysis of the algorithm and enabled early convergence proofs. The policy
still has an effect in that it determines which state—action pairs are visited and updated.
However, all that is required for correct convergence is that all pairs continue to be
updated. As we observed in Chapter 5, this is a minimal requirement in the sense that
any method guaranteed to find optimal behavior in the general case must require it.
Under this assumption and a variant of the usual stochastic approximation conditions on
the sequence of step-size parameters, () has been shown to converge with probability 1 to
g«- The Q-learning algorithm is shown below in procedural form.

Q-learning (off-policy TD control) for estimating = ~ .

Algorithm parameters: step size « € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a[R + ymax, Q(5’,a) — Q(S, 4)]
S5

until S is terminal
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What is the backup diagram for Q-learning? The rule (6.8) updates a state—action
pair, so the top node, the root of the update, must be a small, filled action node. The
update is also from action nodes, maximizing over all those actions possible in the next
state. Thus the bottom nodes of the backup diagram should be all these action nodes.
Finally, remember that we indicate taking the maximum of these “next action” nodes
with an arc across them (Figure 3.4-right). Can you guess now what the diagram is? If
so, please do make a guess before turning to the answer in Figure 6.4 on page 134.

Example 6.6: Cliff Walking This gridworld example compares Sarsa and Q-learning,
highlighting the difference between on-policy (Sarsa) and off-policy (Q-learning) methods.
Consider the gridworld shown to the

right. This is a standard undis- R=-1

counted, episodic task, with start Safer path
and goal states, and the usual ac-
tions causing movement up, down,
right, and left. Reward is —1 on all
transitions except those into the re-
gion marked “The CIliff.” Stepping
into this region incurs a reward of
—100 and sends the agent instantly
back to the start.

The graph to the right shows the
performance of the Sarsa and Q-
learning methods with e-greedy ac-
tion selection, ¢ = 0.1. After an
initial transient, Q-learning learns Sarsa
values for the optimal policy, that 254
which travels right along the edge
of the cliff. Unfortunately, this re-
sults in its occasionally falling off _
the cliff because of the e-greedy ac- rz\ijv:rr]ds Q-learning
tion selection. Sarsa, on the other episoc?e
hand, takes the action selection into
account and learns the longer but
safer path through the upper part
of the gI‘ld Although Q—learning ac- 100 0 l(l)() 260 360 460 S(I)O
tually learns the values of the opti- Episodes
mal policy, its online performance
is worse than that of Sarsa, which
learns the roundabout policy. Of course, if € were gradually reduced, then both methods
would asymptotically converge to the optimal policy. [ |

Optimal path

The Cliff

w__
O<|—

Sum of 54

2754

FEzercise 6.11 Why is Q-learning considered an off-policy control method? O

FEzercise 6.12 Suppose action selection is greedy. Is Q-learning then exactly the same
algorithm as Sarsa? Will they make exactly the same action selections and weight
updates? O
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6.6 Expected Sarsa

Counsider the learning algorithm that is just like Q-learning except that instead of the
maximum over next state—action pairs it uses the expected value, taking into account
how likely each action is under the current policy. That is, consider the algorithm with
the update rule

Q(St, Ar) + Q(S¢, Ar) + Oé[Rt+1 +YEAQ(St11, Aty1) | Stq1] — Q(St, At)]

— Q(St, Ar) + a[Rt+1 +7 ) w(alSe1)Q(Sit1,a) — Q(SuAt)}v (6.9)

but that otherwise follows the schema of Q-learning. Given the next state, Sy, this
algorithm moves deterministically in the same direction as Sarsa moves in ezpectation,
and accordingly it is called Fzpected Sarsa. Its backup diagram is shown on the right in
Figure 6.4.

Expected Sarsa is more complex computationally than Sarsa but, in return, it eliminates
the variance due to the random selection of A;y;. Given the same amount of experience
we might expect it to perform slightly better than Sarsa, and indeed it generally does.
Figure 6.3 shows summary results on the cliff-walking task with Expected Sarsa compared
to Sarsa and Q-learning. Expected Sarsa retains the significant advantage of Sarsa over
Q-learning on this problem. In addition, Expected Sarsa shows a significant improvement
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Figure 6.3: Interim and asymptotic performance of TD control methods on the cliff-walking
task as a function of a. All algorithms used an e-greedy policy with ¢ = 0.1. Asymptotic
performance is an average over 100,000 episodes whereas interim performance is an average
over the first 100 episodes. These data are averages of over 50,000 and 10 runs for the interim
and asymptotic cases respectively. The solid circles mark the best interim performance of each
method. Adapted from van Seijen et al. (2009).
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Figure 6.4: The backup diagrams for Q-learning and Expected Sarsa.

over Sarsa over a wide range of values for the step-size parameter «. In cliff walking
the state transitions are all deterministic and all randomness comes from the policy. In
such cases, Expected Sarsa can safely set a =1 without suffering any degradation of
asymptotic performance, whereas Sarsa can only perform well in the long run at a small
value of «, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cliff walking results Expected Sarsa was used on-policy, but in general it
might use a policy different from the target policy 7 to generate behavior, in which case
it becomes an off-policy algorithm. For example, suppose 7 is the greedy policy while
behavior is more exploratory; then Expected Sarsa is exactly Q-learning. In this sense
Expected Sarsa subsumes and generalizes Q-learning while reliably improving over Sarsa.
Except for the small additional computational cost, Expected Sarsa may completely
dominate both of the other more-well-known TD control algorithms.

6.7 Maximization Bias and Double Learning

All the control algorithms that we have discussed so far involve maximization in the
construction of their target policies. For example, in Q-learning the target policy is
the greedy policy given the current action values, which is defined with a max, and in
Sarsa the policy is often e-greedy, which also involves a maximization operation. In these
algorithms, a maximum over estimated values is used implicitly as an estimate of the
maximum value, which can lead to a significant positive bias. To see why, consider a
single state s where there are many actions a whose true values, ¢(s, a), are all zero but
whose estimated values, Q(s, a), are uncertain and thus distributed some above and some
below zero. The maximum of the true values is zero, but the maximum of the estimates
is positive, a positive bias. We call this maximization bias.

Example 6.7: Maximization Bias Example The small MDP shown inset in
Figure 6.5 provides a simple example of how maximization bias can harm the performance
of TD control algorithms. The MDP has two non-terminal states A and B. Episodes
always start in A with a choice between two actions, left and right. The right action
transitions immediately to the terminal state with a reward and return of zero. The
left action transitions to B, also with a reward of zero, from which there are many
possible actions all of which cause immediate termination with a reward drawn from a
normal distribution with mean —0.1 and variance 1.0. Thus, the expected return for
any trajectory starting with left is —0.1, and thus taking left in state A is always a
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Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown
inset). Q-learning initially learns to take the left action much more often than the right action,
and always takes it significantly more often than the 5% minimum probability enforced by
e-greedy action selection with € = 0.1. In contrast, Double Q-learning is essentially unaffected by
maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates
were zero. Any ties in e-greedy action selection were broken randomly.

mistake. Nevertheless, our control methods may favor left because of maximization bias
making B appear to have a positive value. Figure 6.5 shows that Q-learning with e-greedy
action selection initially learns to strongly favor the left action on this example. Even at
asymptote, Q-learning takes the left action about 5% more often than is optimal at our
parameter settings (¢ = 0.1, « = 0.1, and vy = 1). [ ]

Are there algorithms that avoid maximization bias? To start, consider a bandit case in
which we have noisy estimates of the value of each of many actions, obtained as sample
averages of the rewards received on all the plays with each action. As we discussed above,
there will be a positive maximization bias if we use the maximum of the estimates as
an estimate of the maximum of the true values. One way to view the problem is that
it is due to using the same samples (plays) both to determine the maximizing action
and to estimate its value. Suppose we divided the plays in two sets and used them to
learn two independent estimates, call them @1 (a) and Q2(a), each an estimate of the
true value g(a), for all @ € A. We could then use one estimate, say (1, to determine
the maximizing action A* = argmax, Q1(a), and the other, 2, to provide the estimate
of its value, Q2(A*) = Q2(argmax, Q1(a)). This estimate will then be unbiased in the
sense that E[Q2(A*)] = q(A*). We can also repeat the process with the role of the two
estimates reversed to yield a second unbiased estimate @1 (argmax, Q2(a)). This is the
idea of double learning. Note that although we learn two estimates, only one estimate is
updated on each play; double learning doubles the memory requirements, but does not
increase the amount of computation per step.

The idea of double learning extends naturally to algorithms for full MDPs. For example,
the double learning algorithm analogous to Q-learning, called Double Q-learning, divides
the time steps in two, perhaps by flipping a coin on each step. If the coin comes up heads,
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the update is
Q1(St, Ap) « Q1(St, Ap)+a [Rt+1+’yQ2(St+17al"gmaXQl(StHaa))—Ql(StaAt) . (6.10)

If the coin comes up tails, then the same update is done with @ and @2 switched,
so that @5 is updated. The two approximate value functions are treated completely
symmetrically. The behavior policy can use both action-value estimates. For example, an
e-greedy policy for Double Q-learning could be based on the average (or sum) of the two
action-value estimates. A complete algorithm for Double Q-learning is given in the box
below. This is the algorithm used to produce the results in Figure 6.5. In that example,
double learning seems to eliminate the harm caused by maximization bias. Of course
there are also double versions of Sarsa and Expected Sarsa.

Double Q-learning, for estimating (); ~ Q2 ~ g.

Algorithm parameters: step size « € (0, 1], small € > 0
Initialize Q1 (s,a) and Qa(s,a), for all s € 87, a € A(s), such that Q(terminal,-) =0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + Q2
Take action A, observe R, S’
With 0.5 probabilility:
Qu(5,4) + Q1(S, 4) + a( R +1Qs(S', argmax, Qu (', )) — Qu(5, 4))
else:
Qa2(S, 4) « Qa(S,4) + a( R+ 1Q: (', argmax, Qa(S", @) — Q2(S, 4) )

S+ S
until S is terminal

*Fxercise 6.13 What are the update equations for Double Expected Sarsa with an
e-greedy target policy? O

6.8 Games, Afterstates, and Other Special Cases

In this book we try to present a uniform approach to a wide class of tasks, but of
course there are always exceptional tasks that are better treated in a specialized way. For
example, our general approach involves learning an action-value function, but in Chapter 1
we presented a TD method for learning to play tic-tac-toe that learned something much
more like a state-value function. If we look closely at that example, it becomes apparent
that the function learned there is neither an action-value function nor a state-value
function in the usual sense. A conventional state-value function evaluates states in which
the agent has the option of selecting an action, but the state-value function used in
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tic-tac-toe evaluates board positions after the agent has made its move. Let us call these
afterstates, and value functions over these, afterstate value functions. Afterstates are
useful when we have knowledge of an initial part of the environment’s dynamics but not
necessarily of the full dynamics. For example, in games we typically know the immediate
effects of our moves. We know for each possible chess move what the resulting position
will be, but not how our opponent will reply. Afterstate value functions are a natural
way to take advantage of this kind of knowledge and thereby produce a more efficient
learning method.

The reason it is more efficient to design algorithms in terms of afterstates is apparent
from the tic-tac-toe example. A conventional action-value function would map from
positions and moves to an estimate of the value. But many position—-move pairs produce
the same resulting position, as in the example below:

e e
o + X o x +

In such cases the position—move pairs are different but produce the same “afterposition,”

and thus must have the same value. A conventional action-value function would have to
separately assess both pairs, whereas an afterstate value function would immediately assess
both equally. Any learning about the position—move pair on the left would immediately
transfer to the pair on the right.

Afterstates arise in many tasks, not just games. For example, in queuing tasks there
are actions such as assigning customers to servers, rejecting customers, or discarding
information. In such cases the actions are in fact defined in terms of their immediate
effects, which are completely known.

It is impossible to describe all the possible kinds of specialized problems and corre-
sponding specialized learning algorithms. However, the principles developed in this book
should apply widely. For example, afterstate methods are still aptly described in terms
of generalized policy iteration, with a policy and (afterstate) value function interacting in
essentially the same way. In many cases one will still face the choice between on-policy
and off-policy methods for managing the need for persistent exploration.

Ezercise 6.14 Describe how the task of Jack’s Car Rental (Example 4.2) could be
reformulated in terms of afterstates. Why, in terms of this specific task, would such a
reformulation be likely to speed convergence? O
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6.9 Summary

In this chapter we introduced a new kind of learning method, temporal-difference (TD)
learning, and showed how it can be applied to the reinforcement learning problem. As
usual, we divided the overall problem into a prediction problem and a control problem.
TD methods are alternatives to Monte Carlo methods for solving the prediction problem.
In both cases, the extension to the control problem is via the idea of generalized policy
iteration (GPI) that we abstracted from dynamic programming. This is the idea that
approximate policy and value functions should interact in such a way that they both
move toward their optimal values.

One of the two processes making up GPI drives the value function to accurately predict
returns for the current policy; this is the prediction problem. The other process drives
the policy to improve locally (e.g., to be e-greedy) with respect to the current value
function. When the first process is based on experience, a complication arises concerning
maintaining sufficient exploration. We can classify TD control methods according to
whether they deal with this complication by using an on-policy or off-policy approach.
Sarsa is an on-policy method, and Q-learning is an off-policy method. Expected Sarsa
is also an off-policy method as we present it here. There is a third way in which TD
methods can be extended to control which we did not include in this chapter, called
actor—critic methods. These methods are covered in full in Chapter 13.

The methods presented in this chapter are today the most widely used reinforcement
learning methods. This is probably due to their great simplicity: they can be applied
online, with a minimal amount of computation, to experience generated from interaction
with an environment; they can be expressed nearly completely by single equations that
can be implemented with small computer programs. In the next few chapters we extend
these algorithms, making them slightly more complicated and significantly more powerful.
All the new algorithms will retain the essence of those introduced here: they will be able
to process experience online, with relatively little computation, and they will be driven
by TD errors. The special cases of TD methods introduced in the present chapter should
rightly be called one-step, tabular, model-free TD methods. In the next two chapters we
extend them to n-step forms (a link to Monte Carlo methods) and forms that include
a model of the environment (a link to planning and dynamic programming). Then, in
the second part of the book we extend them to various forms of function approximation
rather than tables (a link to deep learning and artificial neural networks).

Finally, in this chapter we have discussed TD methods entirely within the context of
reinforcement learning problems, but TD methods are actually more general than this.
They are general methods for learning to make long-term predictions about dynamical
systems. For example, TD methods may be relevant to predicting financial data, life
spans, election outcomes, weather patterns, animal behavior, demands on power stations,
or customer purchases. It was only when TD methods were analyzed as pure prediction
methods, independent of their use in reinforcement learning, that their theoretical
properties first came to be well understood. Even so, these other potential applications
of TD learning methods have not yet been extensively explored.
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Bibliographical and Historical Remarks

As we outlined in Chapter 1, the idea of TD learning has its early roots in animal learning
psychology and artificial intelligence, most notably the work of Samuel (1959) and Klopf
(1972). Samuel’s work is described as a case study in Section 16.2. Also related to TD
learning are Holland’s (1975, 1976) early ideas about consistency among value predictions.
These influenced one of the authors (Barto), who was a graduate student from 1970 to
1975 at the University of Michigan, where Holland was teaching. Holland’s ideas led to
a number of TD-related systems, including the work of Booker (1982) and the bucket
brigade of Holland (1986), which is related to Sarsa as discussed below.

6.1-2 Most of the specific material from these sections is from Sutton (1988), includ-
ing the TD(0) algorithm, the random walk example, and the term “temporal-
difference learning.” The characterization of the relationship to dynamic pro-
gramming and Monte Carlo methods was influenced by Watkins (1989), Werbos
(1987), and others. The use of backup diagrams was new to the first edition of
this book.

Tabular TD(0) was proved to converge in the mean by Sutton (1988) and with
probability 1 by Dayan (1992), based on the work of Watkins and Dayan (1992).
These results were extended and strengthened by Jaakkola, Jordan, and Singh
(1994) and Tsitsiklis (1994) by using extensions of the powerful existing theory
of stochastic approximation. Other extensions and generalizations are covered in
later chapters.

6.3 The optimality of the TD algorithm under batch training was established by
Sutton (1988). Illuminating this result is Barnard’s (1993) derivation of the TD
algorithm as a combination of one step of an incremental method for learning a
model of the Markov chain and one step of a method for computing predictions
from the model. The term certainty equivalence is from the adaptive control
literature (e.g., Goodwin and Sin, 1984).

6.4 The Sarsa algorithm was introduced by Rummery and Niranjan (1994). They
explored it in conjunction with artificial neural networks and called it “Modified
Connectionist Q-learning”. The name “Sarsa” was introduced by Sutton (1996).
The convergence of one-step tabular Sarsa (the form treated in this chapter) has
been proved by Singh, Jaakkola, Littman, and Szepesvéari (2000). The “windy
gridworld” example was suggested by Tom Kalt.

Holland’s (1986) bucket brigade idea evolved into an algorithm closely related to
Sarsa. The original idea of the bucket brigade involved chains of rules triggering
each other; it focused on passing credit back from the current rule to the rules
that triggered it. Over time, the bucket brigade came to be more like TD learning
in passing credit back to any temporally preceding rule, not just to the ones
that triggered the current rule. The modern form of the bucket brigade, when
simplified in various natural ways, is nearly identical to one-step Sarsa, as detailed
by Wilson (1994).
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6.5

6.6

6.7

6.8

Q-learning was introduced by Watkins (1989), whose outline of a convergence
proof was made rigorous by Watkins and Dayan (1992). More general convergence
results were proved by Jaakkola, Jordan, and Singh (1994) and Tsitsiklis (1994).

The Expected Sarsa algorithm was introduced by George John (1994), who
called it “Q-learning” and stressed its advantages over Q-learning as an off-policy
algorithm. John’s work was not known to us when we presented Expected
Sarsa in the first edition of this book as an exercise, or to van Seijen, van
Hasselt, Whiteson, and Weiring (2009) when they established Expected Sarsa’s
convergence properties and conditions under which it will outperform regular
Sarsa and Q-learning. Our Figure 6.3 is adapted from their results. Van Seijen
et al. defined “Expected Sarsa” to be an on-policy method exclusively (as we
did in the first edition), whereas now we use this name for the general algorithm
in which the target and behavior policies may differ. The general off-policy
view of Expected Sarsa was noted by van Hasselt (2011), who called it “General
Q-learning.”

Maximization bias and double learning were introduced and extensively investi-
gated by van Hasselt (2010, 2011). The example MDP in Figure 6.5 was adapted
from that in his Figure 4.1 (van Hasselt, 2011).

The notion of an afterstate is the same as that of a “post-decision state” (Van
Roy, Bertsekas, Lee, and Tsitsiklis, 1997; Powell, 2011).



Chapter 7

n-step Bootstrapping

In this chapter we unify the Monte Carlo (MC) methods and the one-step temporal-
difference (TD) methods presented in the previous two chapters. Neither MC methods nor
one-step TD methods are always the best. In this chapter we present n-step T'D methods
that generalize both methods so that one can shift from one to the other smoothly as
needed to meet the demands of a particular task. n-step methods span a spectrum with
MC methods at one end and one-step TD methods at the other. The best methods are
often intermediate between the two extremes.

Another way of looking at the benefits of n-step methods is that they free you from
the tyranny of the time step. With one-step TD methods the same time step determines
how often the action can be changed and the time interval over which bootstrapping
is done. In many applications one wants to be able to update the action very fast to
take into account anything that has changed, but bootstrapping works best if it is over a
length of time in which a significant and recognizable state change has occurred. With
one-step TD methods, these time intervals are the same, and so a compromise must be
made. n-step methods enable bootstrapping to occur over multiple steps, freeing us from
the tyranny of the single time step.

The idea of n-step methods is usually used as an introduction to the algorithmic
idea of eligibility traces (Chapter 12), which enable bootstrapping over multiple time
intervals simultaneously. Here we instead consider the n-step bootstrapping idea on its
own, postponing the treatment of eligibility-trace mechanisms until later. This allows us
to separate the issues better, dealing with as many of them as possible in the simpler
n-step setting.

As usual, we first consider the prediction problem and then the control problem. That
is, we first consider how n-step methods can help in predicting returns as a function of
state for a fixed policy (i.e., in estimating v,). Then we extend the ideas to action values
and control methods.

141
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7.1 mn-step TD Prediction

What is the space of methods lying between Monte Carlo and TD methods? Consider
estimating v, from sample episodes generated using 7. Monte Carlo methods perform
an update for each state based on the entire sequence of observed rewards from that
state until the end of the episode. The update of one-step TD methods, on the other
hand, is based on just the one next reward, bootstrapping from the value of the state
one step later as a proxy for the remaining rewards. One kind of intermediate method,
then, would perform an update based on an intermediate number of rewards: more than
one, but less than all of them until termination. For example, a two-step update would
be based on the first two rewards and the estimated value of the state two steps later.
Similarly, we could have three-step updates, four-step updates, and so on. Figure 7.1
shows the backup diagrams of the spectrum of n-step updates for v,, with the one-step
TD update on the left and the up-until-termination Monte Carlo update on the right.

1-step TD oo-step TD
and TD(0) 2-stepTD  3-step TD n-step TD and Monte Carlo
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Figure 7.1: The backup diagrams of n-step methods. These methods form a spectrum ranging
from one-step TD methods to Monte Carlo methods.

The methods that use n-step updates are still TD methods because they still change
an earlier estimate based on how it differs from a later estimate. Now the later estimate
is not one step later, but n steps later. Methods in which the temporal difference extends
over n steps are called n-step TD methods. The TD methods introduced in the previous
chapter all used one-step updates, which is why we called them one-step TD methods.

More formally, consider the update of the estimated value of state S; as a result of the
state-reward sequence, Si, Ryy1,Si+1, Rito, - - ., Rr, ST (omitting the actions). We know
that in Monte Carlo updates the estimate of v,(S;) is updated in the direction of the
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complete return:
Gy = Riy1 +vRivo + 72Rt+3 + -+ ’YTitilRT,

where T is the last time step of the episode. Let us call this quantity the target of the
update. Whereas in Monte Carlo updates the target is the return, in one-step updates
the target is the first reward plus the discounted estimated value of the next state, which
we call the one-step return:

Gritr1 = Rep1 +7Vi(Se41),

where V; : 8§ — R here is the estimate at time ¢ of v,,. The subscripts on Gy.;y1 indicate
that it is a truncated return for time ¢ using rewards up until time ¢+1, with the discounted
estimate yV;(S;11) taking the place of the other terms YRy 1o +7?Rip3+- -+ " Ry
of the full return, as discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a two-step
update is the two-step return:

Grita = Riy1 +YRiv2 +7*Vir1(Sit2),

where now v2V;;1(S42) corrects for the absence of the terms Y2 Ry 3 + Y3 Rypq + - +
vT=t=1Ry. Similarly, the target for an arbitrary n-step update is the n-step return:

Grain = Riy1 +YRipa + - + 7" 'R + Y Vitn—1(Setn), (7.1)

for all n,t such that n > 1 and 0 < ¢t < T — n. All n-step returns can be considered
approximations to the full return, truncated after n steps and then corrected for the
remaining missing terms by Viin—1(Si4n). If t +n > T (if the n-step return extends
to or beyond termination), then all the missing terms are taken as zero, and the n-step
return defined to be equal to the ordinary full return (Gpiyn = Geif t+n > T).

Note that n-step returns for n > 1 involve future rewards and states that are not
available at the time of transition from ¢ to ¢t + 1. No real algorithm can use the n-step
return until after it has seen R;i, and computed Viy,_1. The first time these are
available is t + n. The natural state-value learning algorithm for using n-step returns is
thus

Vien(St) = Vign-1(91) + a[Grign — Vign—1(S)], 0<t<T, (7.2)

while the values of all other states remain unchanged: Vi1, (s) = Vitn_1(s), for all s#£S;.
We call this algorithm n-step T'D. Note that no changes at all are made during the first
n — 1 steps of each episode. To make up for that, an equal number of additional updates
are made at the end of the episode, after termination and before starting the next episode.
Complete pseudocode is given in the box on the next page.

FEzercise 7.1 In Chapter 6 we noted that the Monte Carlo error can be written as the
sum of TD errors (6.6) if the value estimates don’t change from step to step. Show that
the n-step error used in (7.2) can also be written as a sum TD errors (again if the value
estimates don’t change) generalizing the earlier result. ([l

Ezercise 7.2 (programming) With an n-step method, the value estimates do change from
step to step, so an algorithm that used the sum of TD errors (see previous exercise) in
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n-step TD for estimating V ~ v,

Input: a policy 7

Algorithm parameters: step size « € (0, 1], a positive integer n

Initialize V (s) arbitrarily, for all s € §

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T ¢ o0
Loop for t =0,1,2,... :
| Ift <T, then:

| Take an action according to m(-|S)

| Observe and store the next reward as R;;; and the next state as Sy11
| If S¢yq is terminal, then T < ¢ + 1

| 7+ t—n+1 (7 isthe time whose state’s estimate is being updated)

| If7>0:
|

|

|

G — Z;ﬁi(ﬁrn’ﬂ Ni=T-1R,
If 7+ n<T,then: G+ G+~"V(Sr4n) (Gririn)

V(ST) — V(S‘r) +a [G - V(ST)]
Untilt=T -1

place of the error in (7.2) would actually be a slightly different algorithm. Would it be a
better algorithm or a worse one? Devise and program a small experiment to answer this
question empirically. O

The n-step return uses the value function Vi, _1 to correct for the missing rewards
beyond R;i,. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v, than Vi, 1 is, in a worst-state sense. That is,
the worst error of the expected n-step return is guaranteed to be less than or equal to "
times the worst error under V4, _1:

max Ew[Gt:t+n|St :S] — U (8)‘ < ,.yn max

Vien-1(s) = vx(s)|, (7.3)

for all n > 1. This is called the error reduction property of n-step returns. Because of the
error reduction property, one can show formally that all n-step TD methods converge to
the correct predictions under appropriate technical conditions. The n-step TD methods
thus form a family of sound methods, with one-step TD methods and Monte Carlo
methods as extreme members.

Example 7.1: n-step TD Methods on the Random Walk Consider using n-step
TD methods on the 5-state random walk task described in Example 6.2 (page 125).
Suppose the first episode progressed directly from the center state, C, to the right,
through D and E, and then terminated on the right with a return of 1. Recall that the
estimated values of all the states started at an intermediate value, V(s) = 0.5. As a result
of this experience, a one-step method would change only the estimate for the last state,
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V(E), which would be incremented toward 1, the observed return. A two-step method,
on the other hand, would increment the values of the two states preceding termination:
V(D) and V(E) both would be incremented toward 1. A three-step method, or any n-step
method for n > 2, would increment the values of all three of the visited states toward 1,
all by the same amount.

Which value of n is better? Figure 7.2 shows the results of a simple empirical test for
a larger random walk process, with 19 states instead of 5 (and with a —1 outcome on the
left, all values initialized to 0), which we use as a running example in this chapter. Results
are shown for n-step TD methods with a range of values for n and «. The performance
measure for each parameter setting, shown on the vertical axis, is the square-root of
the average squared error between the predictions at the end of the episode for the 19
states and their true values, then averaged over the first 10 episodes and 100 repetitions
of the whole experiment (the same sets of walks were used for all parameter settings).
Note that methods with an intermediate value of n worked best. This illustrates how
the generalization of TD and Monte Carlo methods to n-step methods can potentially
perform better than either of the two extreme methods.

0.55
0.5

Average 045

RMS error
over 19 states 04
and first 10
episodes  °*°
03
0.25 1 1 1 1 1 ]
0 0.2 04 0.6 0.8 1
8}

Figure 7.2: Performance of n-step TD methods as a function of «, for various values of n, on
a 19-state random walk task (Example 7.1). [ ]

Exercise 7.8 Why do you think a larger random walk task (19 states instead of 5) was
used in the examples of this chapter? Would a smaller walk have shifted the advantage
to a different value of n? How about the change in left-side outcome from 0 to —1 made
in the larger walk? Do you think that made any difference in the best value of n? [

7.2 mn-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this section
we show how n-step methods can be combined with Sarsa in a straightforward way to
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produce an on-policy TD control method. The n-step version of Sarsa we call n-step
Sarsa, and the original version presented in the previous chapter we henceforth call
one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state—action pairs) and then use
an e-greedy policy. The backup diagrams for n-step Sarsa (shown in Figure 7.3), like
those of n-step TD (Figure 7.1), are strings of alternating states and actions, except that
the Sarsa ones all start and end with an action rather a state. We redefine n-step returns
(update targets) in terms of estimated action values:

Grasn = Rip1+vRio+ 47" ' Rin+7" Qrin—1(Sin, An), n>1,0<t < T—n,
(7.4)

with Gy = Gy if t +n > T. The natural algorithm is then

Qi4+n (St At) = Qrn—1(St, At) + @ [Gritvn — Qrn—1(St, Ar)], 0<t<T, (7.5)
while the values of all other states remain unchanged: Q¢4+, (S,a) = Qt1n-1(S,a), for all
s,a such that s # S; or a # A;. This is the algorithm we call n-step Sarsa. Pseudocode

is shown in the box on the next page, and an example of why it can speed up learning
compared to one-step methods is given in Figure 7.4.

1-step Sarsa oo-step Sarsa n-step
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa aka Monte Carlo Expected Sarsa

SR T S S T
T 7 .7 7
DS O
P
IO

[
Figure 7.3: The backup diagrams for the spectrum of n-step methods for state—action values.
They range from the one-step update of Sarsa(0) to the up-until-termination update of the
Monte Carlo method. In between are the n-step updates, based on n steps of real rewards and

the estimated value of the nth next state—action pair, all appropriately discounted. On the far
right is the backup diagram for n-step Expected Sarsa.
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n-step Sarsa for estimating Q) = ¢, or ¢,

Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be e-greedy with respect to @, or to a fixed given policy

Algorithm parameters: step size « € (0, 1], small € > 0, a positive integer n

All store and access operations (for S;, A;, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ag ~ 7(+|Sp)

T + o0
Loop for t =0,1,2,... :
| Ift <T, then:

Take action A,
Observe and store the next reward as R;;; and the next state as S;41
If S¢yq is terminal, then:
T+—t+1
else:
Select and store an action A1 ~ w(-|Siy1)
T+ t—n+1 (7 is the time whose estimate is being updated)
If > 0:

|
|
|
|
|
|
|
| in(r+n,T)
min(7+n, 1'_7-_
| G+ Zz =741 1R

| fr+n<T, then G+ G+"Q(Sr4n, Arin) (Grirtn)
| QSnAr) QS Ar) + a (G — Q(Sy, Ay )]

| If 7 is belng learned, then ensure that 7(-|S;) is e-greedy wrt Q

Until7 =T -1

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
—> > *
v
T T ik}
: G G G| [+
] ¥ [ =

Figure 7.4: Gridworld example of the speedup of policy learning due to the use of n-step
methods. The first panel shows the path taken by an agent in a single episode, ending at a
location of high reward, marked by the G. In this example the values were all initially 0, and all
rewards were zero except for a positive reward at G. The arrows in the other two panels show
which action values were strengthened as a result of this path by one-step and n-step Sarsa
methods. The one-step method strengthens only the last action of the sequence of actions that
led to the high reward, whereas the n-step method strengthens the last n actions of the sequence,
so that much more is learned from the one episode.
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Ezercise 7.4 Prove that the n-step return of Sarsa (7.4) can be written exactly in terms
of a novel TD error, as

min(t+n,T)—1
Grasn = Q1(S A)+ > 7 [Ragr +7Qr(Skr1, Arsr) — Que1(Sk, Ar)].-
k=t
(7.6)

|

What about Expected Sarsa? The backup diagram for the n-step version of Expected

Sarsa is shown on the far right in Figure 7.3. It consists of a linear string of sample

actions and states, just as in n-step Sarsa, except that its last element is a branch over

all action possibilities weighted, as always, by their probability under 7. This algorithm

can be described by the same equation as n-step Sarsa (above) except with the n-step
return redefined as

Gitrn = Rep1 + -+ 9" "Rign + 7" Vign—1(St4n), t+n<T, (7.7)

(with Gy.iq =Gy for t +n > T) where V;(s) is the expected approzimate value of state s,
using the estimated action values at time ¢, under the target policy:

Vi(s) = ZW(@\S)Q,:(S, a), for all s € 8. (7.8)

a

Expected approximate values are used in developing many of the action-value methods
in the rest of this book. If s is terminal, then its expected approximate value is defined
to be 0.

7.3 mn-step Off-policy Learning

Recall that off-policy learning is learning the value function for one policy, m, while
following another policy, b. Often, 7 is the greedy policy for the current action-value-
function estimate, and b is a more exploratory policy, perhaps e-greedy. In order to
use the data from b we must take into account the difference between the two policies,
using their relative probability of taking the actions that were taken (see Section 5.5). In
n-step methods, returns are constructed over n steps, so we are interested in the relative
probability of just those n actions. For example, to make a simple off-policy version of
n-step TD, the update for time ¢ (actually made at time ¢ 4+ n) can simply be weighted

by Pt:t+n—1-
Vian(St) = Vign—1(St) + aptttn—1Gtan — Vien—1(St)], 0<t < T, (7.9)

where py.44n—1, called the importance sampling ratio, is the relative probability under
the two policies of taking the n actions from A; to Ayqp—1 (cf. Eq. 5.3):

min(h,T—1)

. m(Ag|Sk)
P g W (7.10)
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For example, if any one of the actions would never be taken by 7 (i.e., m(Ag|Sk) = 0) then
the n-step return should be given zero weight and be totally ignored. On the other hand,
if by chance an action is taken that m would take with much greater probability than b
does, then this will increase the weight that would otherwise be given to the return. This
makes sense because that action is characteristic of 7 (and therefore we want to learn
about it) but is selected only rarely by b and thus rarely appears in the data. To make
up for this we have to over-weight it when it does occur. Note that if the two policies
are actually the same (the on-policy case) then the importance sampling ratio is always
1. Thus our new update (7.9) generalizes and can completely replace our earlier n-step
TD update. Similarly, our previous n-step Sarsa update can be completely replaced by a
simple off-policy form:

Qt—i—n(Sta At) = Qt+n—1(5t, At) + apiiiitin [Gt:t+n - Qt+n—1(st7 At)] s (7-11)

for 0 <t < T. Note that the importance sampling ratio here starts and ends one step
later than for n-step TD (7.9). This is because here we are updating a state—action
pair. We do not have to care how likely we were to select the action; now that we have
selected it we want to learn fully from what happens, with importance sampling only for
subsequent actions. Pseudocode for the full algorithm is shown in the box below.

Off-policy n-step Sarsa for estimating Q ~ g. or ¢

Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s € S,a € A
Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be greedy with respect to @, or as a fixed given policy

Algorithm parameters: step size a € (0, 1], a positive integer n

All store and access operations (for Si, A¢, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sp # terminal
Select and store an action Ag ~ b(-|So)

T+ 0
Loop for t =0,1,2,...:
| Ift < T, then:

| Take action A;

| Observe and store the next reward as R:+1 and the next state as Si4+1
| If S¢+1 is terminal, then:

| T—t+1

| else:

| Select and store an action A¢y1 ~ b(:|S¢+1)

| 7+ t—m+1 (7 is the time whose estimate is being updated)
|

|

|

|

|

|

If 7> 0:
min(t+n—1,T—-1) w(A;|S;
P < HZ:Ti; ) W (pr+1:t+n71)
G+~ Z;ﬁzr;f:f—n,T) ,yz—‘r—lRi
Ifr4+n< T, then: G + G + ’}/nQ(Sqqu,, A-r+n) (G‘r:7'+n)

Q(Sr, Ar)  Q(Sr, Ar) + ap[G = Q(Sr, Ar)]
If 7 is being learned, then ensure that 7(:|S-) is greedy wrt Q
Untilt=T -1




150 Chapter 7: n-step Bootstrapping

The off-policy version of n-step Expected Sarsa would use the same update as above
for n-step Sarsa except that the importance sampling ratio would have one less factor in
it. That is, the above equation would use p¢y1.44n—1 instead of piy1.44n, and of course
it would use the Expected Sarsa version of the n-step return (7.7). This is because in
Expected Sarsa all possible actions are taken into account in the last state; the one
actually taken has no effect and does not have to be corrected for.

7.4 *Per-decision Methods with Control Variates

The multi-step off-policy methods presented in the previous section are simple and
conceptually clear, but are probably not the most efficient. A more sophisticated approach
would use per-decision importance sampling ideas such as were introduced in Section 5.9.
To understand this approach, first note that the ordinary n-step return (7.1), like all
returns, can be written recursively. For the n steps ending at horizon h, the n-step return
can be written

Gi:n = Rip1 +7Giq1:n, t<h<T, (7.12)

where Gp.p, = Vi,—1(Sr). (Recall that this return is used at time h, previously denoted
t +n.) Now consider the effect of following a behavior policy b that is not the same
as the target policy w. All of the resulting experience, including the first reward Ry
and the next state Sy;1 must be weighted by the importance sampling ratio for time ¢,
pr = %. One might be tempted to simply weight the righthand side of the above
equation, but one can do better. Suppose the action at time ¢ would never be selected by
m, so that p; is zero. Then a simple weighting would result in the n-step return being
zero, which could result in high variance when it was used as a target. Instead, in this
more sophisticated approach, one uses an alternate, off-policy definition of the n-step
return ending at horizon h, as

Gin = pt (Rig1 +vYGiyrn) + (1 — pe) Vi—1(Se), t<h<T, (7.13)

where again Gp.p, = Vi,—1(Sp). In this approach, if p; is zero, then instead of the target
being zero and causing the estimate to shrink, the target is the same as the estimate and
causes no change. The importance sampling ratio being zero means we should ignore the
sample, so leaving the estimate unchanged seems appropriate. The second, additional
term in (7.13) is called a control variate (for obscure reasons). Notice that the control
variate does not change the expected update; the importance sampling ratio has expected
value one (Section 5.9) and is uncorrelated with the estimate, so the expected value
of the control variate is zero. Also note that the off-policy definition (7.13) is a strict
generalization of the earlier on-policy definition of the n-step return (7.1), as the two are
identical in the on-policy case, in which p; is always 1.

For a conventional n-step method, the learning rule to use in conjunction with (7.13)
is the n-step TD update (7.2), which has no explicit importance sampling ratios other
than those embedded in the return.

FEzercise 7.5 Write the pseudocode for the off-policy state-value prediction algorithm
described above. |
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For action values, the off-policy definition of the m-step return is a little different
because the first action does not play a role in the importance sampling. That first action
is the one being learned; it does not matter if it was unlikely or even impossible under the
target policy—it has been taken and now full unit weight must be given to the reward
and state that follows it. Importance sampling will apply only to the actions that follow
it.

First note that for action values the n-step on-policy return ending at horizon h,
expectation form (7.7), can be written recursively just as in (7.12), except that for action
values the recursion ends with Gj,.;, = V;,_1(S}) as in (7.8). An off-policy form with
control variates is

Gen = Repq + ’Y(Pt+1Gt+1:h + Vh—l(St+1) - Pt+1Qh—1(St+1,At+1))7

= Rit1 +vpe41 (Gt+1:h — Qn—1(St41, At+1)) +YVh-1(Si41), t<h<T.
(7.14)

If h < T, then the recursion ends with Gp.p, = Qn—1(Sh, An), whereas, if h > T,
the recursion ends with and Gr_1.;, = Ry. The resultant prediction algorithm (after
combining with (7.5)) is analogous to Expected Sarsa.

Exercise 7.6 Prove that the control variate in the above equations does not change the
expected value of the return. ([l

*Fxercise 7.7 Write the pseudocode for the off-policy action-value prediction algorithm
described immediately above. Pay particular attention to the termination conditions for
the recursion upon hitting the horizon or the end of episode. ([l

Egzercise 7.8 Show that the general (off-policy) version of the n-step return (7.13) can
still be written exactly and compactly as the sum of state-based TD errors (6.5) if the
approximate state value function does not change. O

Ezercise 7.9 Repeat the above exercise for the action version of the off-policy n-step
return (7.14) and the Expected Sarsa TD error (the quantity in brackets in Equation 6.9).
O

Ezercise 7.10 (programming) Devise a small off-policy prediction problem and use it to
show that the off-policy learning algorithm using (7.13) and (7.2) is more data efficient
than the simpler algorithm using (7.1) and (7.9). O

The importance sampling that we have used in this section, the previous section, and
in Chapter 5, enables sound off-policy learning, but also results in high variance updates,
forcing the use of a small step-size parameter and thereby causing learning to be slow. It
is probably inevitable that off-policy training is slower than on-policy training—after all,
the data is less relevant to what is being learned. However, it is probably also true that
these methods can be improved on. The control variates are one way of reducing the
variance. Another is to rapidly adapt the step sizes to the observed variance, as in the
Autostep method (Mahmood, Sutton, Degris and Pilarski, 2012). Yet another promising
approach is the invariant updates of Karampatziakis and Langford (2010) as extended
to TD by Tian (in preparation). The usage technique of Mahmood (2017; Mahmood
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and Sutton, 2015) may also be part of the solution. In the next section we consider an
off-policy learning method that does not use importance sampling.

7.5 Off-policy Learning Without Importance Sampling:
The n-step Tree Backup Algorithm

Is off-policy learning possible without importance sampling? Q-learning and Expected
Sarsa from Chapter 6 do this for the one-step case, but is there a corresponding multi-step
algorithm? In this section we present just such an n-step method, called the tree-backup
algorithm.

The idea of the algorithm is suggested by the 3-step tree-backup backup
diagram shown to the right. Down the central spine and labeled in the
diagram are three sample states and rewards, and two sample actions.
These are the random variables representing the events occurring after the
initial state—action pair S;, A;. Hanging off to the sides of each state are
the actions that were not selected. (For the last state, all the actions are
considered to have not (yet) been selected.) Because we have no sample
data for the unselected actions, we bootstrap and use the estimates of
their values in forming the target for the update. This slightly extends the
idea of a backup diagram. So far we have always updated the estimated
value of the node at the top of the diagram toward a target combining L IAt'
the rewards along the way (appropriately discounted) and the estimated 3

values of the nodes at the bottom. In the tree-backup update, the target /Kt +3
includes all these things plus the estimated values of the dangling action

nodes hanging off the sides, at all levels. This is why it is called a tree- e o 0
backup update; it is an update from the entire tree of estimated action the 3-step

values.
More precisely, the update is from the estimated action values of the

tree-backup
update

leaf nodes of the tree. The action nodes in the interior, corresponding to

the actual actions taken, do not participate. Each leaf node contributes to the target
with a weight proportional to its probability of occurring under the target policy w. Thus
each first-level action a contributes with a weight of m(a|S¢41), except that the action
actually taken, A1, does not contribute at all. Its probability, m(A¢11]St+1), is used
to weight all the second-level action values. Thus, each non-selected second-level action
a’ contributes with weight m(Asy1|Si+1)7(a’|St+2). Each third-level action contributes
with weight m(A41]Si+1)m(Arra|Sire)m(a”|Si+3), and so on. It is as if each arrow to an
action node in the diagram is weighted by the action’s probability of being selected under
the target policy and, if there is a tree below the action, then that weight applies to all
the leaf nodes in the tree.
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We can think of the 3-step tree-backup update as consisting of 6 half-steps, alternating
between sample half-steps from an action to a subsequent state, and expected half-steps
considering from that state all possible actions with their probabilities of occurring under
the policy.

Now let us develop the detailed equations for the n-step tree-backup algorithm. The
one-step return (target) is the same as that of Expected Sarsa,

Guis1 = R +7 Z m(a|St41)Q:(St41, a), (7.15)

for t <T — 1, and the two-step tree-backup return is

Grirar = Ripr +7 Y m(alSi41)Qut1(Sei1, )
a?’éAtJrl

+ 7y (Ar1|Se41) (Rt+2 +9 > m(alSir2)Qer1(Sera, a))

= Rip1 +7 Y, m(alS11)Qer1(Si41,a) + v (A1 |Ser1) Gryraga,
aFEAr41

for t < T — 2. The latter form suggests the general recursive definition of the tree-backup
n-step return:

Grtn = Rip1+7 Z m(alSt41)Quan-1(Sit1,a) + Y(Ar1]Se1)Girrign, (7.16)
aFAii

for t <T —1,n > 2, with the n = 1 case handled by (7.15) except for Gr_1.44n = Rr.
This target is then used with the usual action-value update rule from n-step Sarsa:

Qt4+n(St; At) = Qign—1(St, At) + ¢ [Gritn — Qran—1(St, Ar)],

for 0 < t < T, while the values of all other state—action pairs remain unchanged:
Qt4n(8,a) = Qiyn—1(s,a), for all s,a such that s#S; or a # A;. Pseudocode for this
algorithm is shown in the box on the next page.

Exercise 7.11 Show that if the approximate action values are unchanging, then the
tree-backup return (7.16) can be written as a sum of expectation-based TD errors:

min(t+n—1,T—1) k
Grein = QS A)+ Y & ] (AilS)),
k=t 1=t+1

where §; = Ry1 +vVi(Sir1) — Q(St, At) and V; is given by (7.8). O
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n-step Tree Backup for estimating Q) =~ g, or ¢,

Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be greedy with respect to @, or as a fixed given policy
Algorithm parameters: step size « € (0, 1], a positive integer n

All store and access operations can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Choose an action Ay arbitrarily as a function of Sy; Store Ay
T ¢ o0
Loop for t =0,1,2,... :
| Ift<T:
| Take action A;; observe and store the next reward and state as Rii1, St4+1
| If Syy1 is terminal:
| T+t+1
| else:
| Choose an action A;y; arbitrarily as a function of S¢y1; Store A;qq
| 7+ t+1—n (7 is the time whose estimate is being updated)
| If7>0:
| Ift+1>1T:
| G« Rr
| else
| G« Riy1 +7 3, m(alSi41)Q(Si41, a)
| Loop for k = min(¢,T — 1) down through 7 + 1:
| G < Ry +7Za;ﬁAk m(a|Sk)Q(Sk, a) + ym(Ax|Sk)G
| Q(ST7AT) <~ Q(STﬂAT) +a[G_Q(ST7A’T)]
| If 7 is being learned, then ensure that 7 (:|.S;) is greedy wrt Q
Until =T —1

7.6 *A Unifying Algorithm: n-step Q(o)

So far in this chapter we have considered three different kinds of action-value algorithms,
corresponding to the first three backup diagrams shown in Figure 7.5. n-step Sarsa has
all sample transitions, the tree-backup algorithm has all state-to-action transitions fully
branched without sampling, and n-step Expected Sarsa has all sample transitions except
for the last state-to-action one, which is fully branched with an expected value. To what
extent can these algorithms be unified?

One idea for unification is suggested by the fourth backup diagram in Figure 7.5. This
is the idea that one might decide on a step-by-step basis whether one wanted to take the
action as a sample, as in Sarsa, or consider the expectation over all actions instead, as in
the tree-backup update. Then, if one chose always to sample, one would obtain Sarsa,
whereas if one chose never to sample, one would get the tree-backup algorithm. Expected
Sarsa would be the case where one chose to sample for all steps except for the last one.
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Figure 7.5: The backup diagrams of the three kinds of n-step action-value updates considered
so far in this chapter (4-step case) plus the backup diagram of a fourth kind of update that unifies
them all. The ‘p’s indicate half transitions on which importance sampling is required in the
off-policy case. The fourth kind of update unifies all the others by choosing on a state-by-state
basis whether to sample (o, = 1) or not (o, = 0).

And of course there would be many other possibilities, as suggested by the last diagram
in the figure. To increase the possibilities even further we can consider a continuous
variation between sampling and expectation. Let oy € [0, 1] denote the degree of sampling
on step t, with ¢ = 1 denoting full sampling and ¢ = 0 denoting a pure expectation with
no sampling. The random variable o, might be set as a function of the state, action, or
state—action pair at time ¢. We call this proposed new algorithm n-step Q(o).

Now let us develop the equations of n-step Q(o). First we write the tree-backup
n-step return (7.16) in terms of the horizon h =t + n and then in terms of the expected
approximate value V (7.8):

Gen = Rep1 +7y Z 7(alSi41)Qn—1(St41,a) + Y7 (Air1|St41)Gri1:n
aFAi

= Rit1 +YVae1(Si1) — v (A1) Se41) Q-1 (Se41, Ar1) + ym(Aes1|Ses1)Grran
= Riy1 +ym(Ai41]Se41) (Gt+1:h — Qn—1(St+1, At+1)) + YVh-1(St+1),

after which it is exactly like the n-step return for Sarsa with control variates (7.14) except
with the action probability m(A¢11]S¢+1) substituted for the importance-sampling ratio
pry1- For Q(o), we slide linearly between these two cases:

Giuh = Rep1 + ’7<Ut+1pt+1 +(1- Ut+1)7T(At+1|St+1>) (Gt+1:h - thl(StJrl»AtJrl))
+ ’YVh_1(St+1), (717)



156 Chapter 7: n-step Bootstrapping

for t < h < T. The recursion ends with Gp., = Qp—1(Sh, Ay) if h < T, or with
Gr_1.7 = Ry if h = T. Then we use the general (off-policy) update for n-step Sarsa
(7.11). A complete algorithm is given in the box.

Off-policy n-step Q(o) for estimating @ ~ ¢. or ¢,

Input: an arbitrary behavior policy b such that b(a|s) > 0, for all s € §,a € A
Initialize Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be e-greedy with respect to @, or as a fixed given policy
Algorithm parameters: step size « € (0, 1], small € > 0, a positive integer n
All store and access operations can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Choose and store an action Ay ~ b(-|Sp)
T + o0
Loop for t=0,1,2,... :
Ift<T:
Take action Ay; observe and store the next reward and state as Rii1, St+1
If Siyq is terminal:
T+—t+1
else:
Choose and store an action A;yq ~ b(-|S¢41)

Select and store o441

m(At41]St41)
Store BA]Se) 3 P

|

|

|

|

|

|

|

|

| 7+ t—n+1 (7 is the time whose estimate is being updated)
| Ifr>0:
|

|

|

|

|

|

|

|

|

G« 0:
Loop for k = min(t + 1,T) down through 7 + 1:
ifk="T:
G+~ Rr
else:

V>, m(alSk)Q(Sk, a) B
G Ri + v(okpr + (1 — o) (Ak|Sk)) (G — Q(Sk, Ar)) + 7V
Q(STa AT) <~ Q(S‘ra AT) +a [G - Q(ST7 AT)]
If 7 is being learned, then ensure that 7 (:|S;) is greedy wrt Q
Untilt =T -1
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7.7 Summary

In this chapter we have developed a range of temporal-difference learning methods that lie
in between the one-step TD methods of the previous chapter and the Monte Carlo methods
of the chapter before. Methods that involve an intermediate amount of bootstrapping
are important because they will typically perform better than either extreme.
Our focus in this chapter has been on n-step methods, which
look ahead to the next n rewards, states, and actions. The two
T ]
g
g
(o}
a

s

4-step backup diagrams to the right together summarize most of the
methods introduced. The state-value update shown is for n-step ﬁ)
[ ]

n-step Q(c), which generalizes Expected Sarsa and Q-learning. All
n-step methods involve a delay of n time steps before updating,
as only then are all the required future events known. A further
drawback is that they involve more computation per time step
than previous methods. Compared to one-step methods, n-step
methods also require more memory to record the states, actions,
rewards, and sometimes other variables over the last n time steps.
Eventually, in Chapter 12, we will see how multi-step TD methods
can be implemented with minimal memory and computational
complexity using eligibility traces, but there will always be some
additional computation beyond one-step methods. Such costs can
be well worth paying to escape the tyranny of the single time step.

-1
=0
 J
1
=0

TD with importance sampling, and the action-value update is for
p?

OO0+ 09

Although n-step methods are more complex than those using
eligibility traces, they have the great benefit of being conceptually  4-step 4-step
clear. We have sought to take advantage of this by developing two TD Q(o)
approaches to off-policy learning in the n-step case. One, based on
importance sampling is conceptually simple but can be of high variance. If the target and
behavior policies are very different it probably needs some new algorithmic ideas before
it can be efficient and practical. The other, based on tree-backup updates, is the natural
extension of Q-learning to the multi-step case with stochastic target policies. It involves
no importance sampling but, again if the target and behavior policies are substantially
different, the bootstrapping may span only a few steps even if n is large.
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Bibliographical and Historical Remarks

The notion of n-step returns is due to Watkins (1989), who also first discussed their error
reduction property. n-step algorithms were explored in the first edition of this book,
in which they were treated as of conceptual interest, but not feasible in practice. The
work of Cichosz (1995) and particularly van Seijen (2016) showed that they are actually
completely practical algorithms. Given this, and their conceptual clarity and simplicity,
we have chosen to highlight them here in the second edition. In particular, we now
postpone all discussion of the backward view and of eligibility traces until Chapter 12.

7.1-2 The results in the random walk examples were made for this text based on work
of Sutton (1988) and Singh and Sutton (1996). The use of backup diagrams to
describe these and other algorithms in this chapter is new.

7.3—5 The developments in these sections are based on the work of Precup, Sutton,
and Singh (2000), Precup, Sutton, and Dasgupta (2001), and Sutton, Mahmood,
Precup, and van Hasselt (2014).

The tree-backup algorithm is due to Precup, Sutton, and Singh (2000), but the
presentation of it here is new.

7.6 The Q(o) algorithm is new to this text, but closely related algorithms have been
explored further by De Asis, Hernandez-Garcia, Holland, and Sutton (2017).



Chapter 8

Planning and Learning with
Tabular Methods

In this chapter we develop a unified view of reinforcement learning methods that require
a model of the environment, such as dynamic programming and heuristic search, and
methods that can be used without a model, such as Monte Carlo and temporal-difference
methods. These are respectively called model-based and model-free reinforcement learning
methods. Model-based methods rely on planning as their primary component, while
model-free methods primarily rely on learning. Although there are real differences between
these two kinds of methods, there are also great similarities. In particular, the heart of
both kinds of methods is the computation of value functions. Moreover, all the methods
are based on looking ahead to future events, computing a backed-up value, and then
using it as an update target for an approximate value function. Earlier in this book we
presented Monte Carlo and temporal-difference methods as distinct alternatives, then
showed how they can be unified by n-step methods. Our goal in this chapter is a similar
integration of model-based and model-free methods. Having established these as distinct
in earlier chapters, we now explore the extent to which they can be intermixed.

8.1 Models and Planning

By a model of the environment we mean anything that an agent can use to predict how the
environment will respond to its actions. Given a state and an action, a model produces a
prediction of the resultant next state and next reward. If the model is stochastic, then
there are several possible next states and next rewards, each with some probability of
occurring. Some models produce a description of all possibilities and their probabilities;
these we call distribution models. Other models produce just one of the possibilities,
sampled according to the probabilities; these we call sample models. For example, consider
modeling the sum of a dozen dice. A distribution model would produce all possible sums
and their probabilities of occurring, whereas a sample model would produce an individual

159
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sum drawn according to this probability distribution. The kind of model assumed in
dynamic programming—estimates of the MDP’s dynamics, p(s’,7|s, a)—is a distribution
model. The kind of model used in the blackjack example in Chapter 5 is a sample model.
Distribution models are stronger than sample models in that they can always be used
to produce samples. However, in many applications it is much easier to obtain sample
models than distribution models. The dozen dice are a simple example of this. It would
be easy to write a computer program to simulate the dice rolls and return the sum, but
harder and more error-prone to figure out all the possible sums and their probabilities.

Models can be used to mimic or simulate experience. Given a starting state and action,
a sample model produces a possible transition, and a distribution model generates all
possible transitions weighted by their probabilities of occurring. Given a starting state
and a policy, a sample model could produce an entire episode, and a distribution model
could generate all possible episodes and their probabilities. In either case, we say the
model is used to simulate the environment and produce simulated experience.

The word planning is used in several different ways in different fields. We use the
term to refer to any computational process that takes a model as input and produces or
improves a policy for interacting with the modeled environment:

model planning

policy

In artificial intelligence, there are two distinct approaches to planning according to our
definition. State-space planning, which includes the approach we take in this book,
is viewed primarily as a search through the state space for an optimal policy or an
optimal path to a goal. Actions cause transitions from state to state, and value functions
are computed over states. In what we call plan-space planning, planning is instead a
search through the space of plans. Operators transform one plan into another, and
value functions, if any, are defined over the space of plans. Plan-space planning includes
evolutionary methods and “partial-order planning,” a common kind of planning in artificial
intelligence in which the ordering of steps is not completely determined at all stages of
planning. Plan-space methods are difficult to apply efficiently to the stochastic sequential
decision problems that are the focus in reinforcement learning, and we do not consider
them further (but see, e.g., Russell and Norvig, 2010).

The unified view we present in this chapter is that all state-space planning methods
share a common structure, a structure that is also present in the learning methods
presented in this book. It takes the rest of the chapter to develop this view, but there are
two basic ideas: (1) all state-space planning methods involve computing value functions
as a key intermediate step toward improving the policy, and (2) they compute value
functions by updates or backup operations applied to simulated experience. This common
structure can be diagrammed as follows:

simulated backups

model .
experience

values ——= policy

Dynamic programming methods clearly fit this structure: they make sweeps through the
space of states, generating for each state the distribution of possible transitions. Each
distribution is then used to compute a backed-up value (update target) and update the
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state’s estimated value. In this chapter we argue that various other state-space planning
methods also fit this structure, with individual methods differing only in the kinds of
updates they do, the order in which they do them, and in how long the backed-up
information is retained.

Viewing planning methods in this way emphasizes their relationship to the learning
methods that we have described in this book. The heart of both learning and planning
methods is the estimation of value functions by backing-up update operations. The
difference is that whereas planning uses simulated experience generated by a model,
learning methods use real experience generated by the environment. Of course this
difference leads to a number of other differences, for example, in how performance is
assessed and in how flexibly experience can be generated. But the common structure
means that many ideas and algorithms can be transferred between planning and learning.
In particular, in many cases a learning algorithm can be substituted for the key update
step of a planning method. Learning methods require only experience as input, and in
many cases they can be applied to simulated experience just as well as to real experience.
The box below shows a simple example of a planning method based on one-step tabular
Q-learning and on random samples from a sample model. This method, which we call
random-sample one-step tabular Q-planning, converges to the optimal policy for the model
under the same conditions that one-step tabular Q-learning converges to the optimal
policy for the real environment (each state—action pair must be selected an infinite number
of times in Step 1, and o must decrease appropriately over time).

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € 8, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S’
Q(S, A) < Q(S, A) + a[R + ymax, Q(S’,a) — Q(S, A)]

. .

In addition to the unified view of planning and learning methods, a second theme in
this chapter is the benefits of planning in small, incremental steps. This enables planning
to be interrupted or redirected at any time with little wasted computation, which appears
to be a key requirement for efficiently intermixing planning with acting and with learning
of the model. Planning in very small steps may be the most efficient approach even on
pure planning problems if the problem is too large to be solved exactly.

8.2 Dyna: Integrated Planning, Acting, and Learning

When planning is done online, while interacting with the environment, a number of
interesting issues arise. New information gained from the interaction may change the
model and thereby interact with planning. It may be desirable to customize the planning
process in some way to the states or decisions currently under consideration, or expected
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in the near future. If decision making and model learning are both computation-intensive
processes, then the available computational resources may need to be divided between
them. To begin exploring these issues, in this section we present Dyna-Q, a simple
architecture integrating the major functions needed in an online planning agent. Each
function appears in Dyna-Q in a simple, almost trivial, form. In subsequent sections we
elaborate some of the alternate ways of achieving each function and the trade-offs between
them. For now, we seek merely to illustrate the ideas and stimulate your intuition.
Within a planning agent, there are at least two roles for real experience: it can be
used to improve the model (to make it more accurately match the real environment)
and it can be used to directly improve the value function and policy using the kinds of
reinforcement learning methods we have discussed

in previous chapters. The former we call model- value/policy

learning, and the latter we call direct reinforcement .
learning (direct RL). The possible relationships . acting
between experience, model, values, and policy are planning di;ﬁ_Ct

summarized in the diagram to the right. Each ar-

row shows a relationship of influence and presumed

improvement. Note how experience can improve model experience
value functions and policies either directly or in- \_/
directly via the model. It is the latter, which is

sometimes called indirect reinforcement learning, I;?giig

that is involved in planning.

Both direct and indirect methods have advantages and disadvantages. Indirect methods
often make fuller use of a limited amount of experience and thus achieve a better policy
with fewer environmental interactions. On the other hand, direct methods are much
simpler and are not affected by biases in the design of the model. Some have argued
that indirect methods are always superior to direct ones, while others have argued that
direct methods are responsible for most human and animal learning. Related debates
in psychology and artificial intelligence concern the relative importance of cognition as
opposed to trial-and-error learning, and of deliberative planning as opposed to reactive
decision making (see Chapter 14 for discussion of some of these issues from the perspective
of psychology). Our view is that the contrast between the alternatives in all these debates
has been exaggerated, that more insight can be gained by recognizing the similarities
between these two sides than by opposing them. For example, in this book we have
emphasized the deep similarities between dynamic programming and temporal-difference
methods, even though one was designed for planning and the other for model-free learning.

Dyna-Q includes all of the processes shown in the diagram above—planning, acting,
model-learning, and direct RL—all occurring continually. The planning method is the
random-sample one-step tabular Q-planning method on page 161. The direct RL method
is one-step tabular Q-learning. The model-learning method is also table-based and assumes
the environment is deterministic. After each transition Sy, Ay — R;11,S¢+1, the model
records in its table entry for S;, A; the prediction that R;y1,S:+1 will deterministically
follow. Thus, if the model is queried with a state—action pair that has been experienced
before, it simply returns the last-observed next state and next reward as its prediction.
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During planning, the Q-planning algorithm randomly samples only from state—action
pairs that have previously been experienced (in Step 1), so the model is never queried
with a pair about which it has no information.

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one example,
is shown in Figure 8.1. The central column represents the basic interaction between
agent and environment, giving rise to a trajectory of real experience. The arrow on the
left of the figure represents direct reinforcement learning operating on real experience to
improve the value function and the policy. On the right are model-based processes. The
model is learned from real experience and gives rise to simulated experience. We use the
term search control to refer to the process that selects the starting states and actions
for the simulated experiences generated by the model. Finally, planning is achieved by
applying reinforcement learning methods to the simulated experiences just as if they had
really happened. Typically, as in Dyna-Q, the same reinforcement learning method is
used both for learning from real experience and for planning from simulated experience.
The reinforcement learning method is thus the “final common path” for both learning
and planning. Learning and planning are deeply integrated in the sense that they share
almost all the same machinery, differing only in the source of their experience.

AN

Policy/value functions

planning update

direct RL simulated

update experience
real
experience
model search
learning control
Model

[Environment]

Figure 8.1: The general Dyna Architecture. Real experience, passing back and forth between
the environment and the policy, affects policy and value functions in much the same way as does
simulated experience generated by the model of the environment.

Conceptually, planning, acting, model-learning, and direct RL occur simultaneously
and in parallel in Dyna agents. For concreteness and implementation on a serial computer,
however, we fully specify the order in which they occur within a time step. In Dyna-Q),
the acting, model-learning, and direct RL processes require little computation, and we
assume they consume just a fraction of the time. The remaining time in each step can be
devoted to the planning process, which is inherently computation-intensive. Let us assume
that there is time in each step, after acting, model-learning, and direct RL, to complete
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n iterations (Steps 1-3) of the Q-planning algorithm. In the pseudocode algorithm for
Dyna-Q in the box below, Model(s,a) denotes the contents of the (predicted next state
and reward) for state—action pair (s,a). Direct reinforcement learning, model-learning,
and planning are implemented by steps (d), (e), and (f), respectively. If (e) and (f) were
omitted, the remaining algorithm would be one-step tabular Q-learning.

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Loop forever:

(a) S < current (nonterminal) state
(b) A « e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S, A) + Q(S A) + a[R + ymax, Q(S',a) — Q(S, A)]
(e) Model(S,A) < R, S’ (assuming deterministic environment)
(f) Loop repeat n times:

S < random previously observed state

A < random action previously taken in S

R, S’ + Model(S, A)

Q(S, A) + Q(S, A) + a[R + ymax, Q(5,a) — Q(S, A)]

Example 8.1: Dyna Maze Consider the simple maze shown inset in Figure 8.2. In
each of the 47 states there are four actions, up, down, right, and left, which take the
agent deterministically to the corresponding neighboring states, except when movement
is blocked by an obstacle or the edge of the maze, in which case the agent remains where
it is. Reward is zero on all transitions, except those into the goal state, on which it is +1.
After reaching the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with v = 0.95.

The main part of Figure 8.2 shows average learning curves from an experiment in
which Dyna-Q agents were applied to the maze task. The initial action values were zero,
the step-size parameter was o = 0.1, and the exploration parameter was € = 0.1. When
selecting greedily among actions, ties were broken randomly. The agents varied in the
number of planning steps, n, they performed per real step. For each n, the curves show
the number of steps taken by the agent to reach the goal in each episode, averaged over 30
repetitions of the experiment. In each repetition, the initial seed for the random number
generator was held constant across algorithms. Because of this, the first episode was
exactly the same (about 1700 steps) for all values of n, and its data are not shown in
the figure. After the first episode, performance improved for all values of n, but much
more rapidly for larger values. Recall that the n = 0 agent is a nonplanning agent, using
only direct reinforcement learning (one-step tabular Q-learning). This was by far the
slowest agent on this problem, despite the fact that the parameter values (« and ) were
optimized for it. The nonplanning agent took about 25 episodes to reach (e-)optimal
performance, whereas the n = 5 agent took about five episodes, and the n = 50 agent
took only three episodes.
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Figure 8.2: A simple maze (inset) and the average learning curves for Dyna-Q agents varying
in their number of planning steps (n) per real step. The task is to travel from S to G as quickly
as possible.

Figure 8.3 shows why the planning agents found the solution so much faster than
the nonplanning agent. Shown are the policies found by the n = 0 and n = 50 agents
halfway through the second episode. Without planning (n = 0), each episode adds only
one additional step to the policy, and so only one step (the last) has been learned so far.
With planning, again only one step is learned during the first episode, but here during
the second episode an extensive policy has been developed that by the end of the episode
will reach almost back to the start state. This policy is built by the planning process
while the agent is still wandering near the start state. By the end of the third episode a
complete optimal policy will have been found and perfect performance attained.

WITHOUT PLANNING (n=0) WITH PLANNING ( 1:50)
= G =ttt |G

t A saRAR! }

s S -y |~y 4
- ===}

m [t~

— b ===

Figure 8.3: Policies found by planning and nonplanning Dyna-Q agents halfway through the
second episode. The arrows indicate the greedy action in each state; if no arrow is shown for a
state, then all of its action values were equal. The black square indicates the location of the
agent. |
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In Dyna-Q, learning and planning are accomplished by exactly the same algorithm,
operating on real experience for learning and on simulated experience for planning.
Because planning proceeds incrementally, it is trivial to intermix planning and acting.
Both proceed as fast as they can. The agent is always reactive and always deliberative,
responding instantly to the latest sensory information and yet always planning in the
background. Also ongoing in the background is the model-learning process. As new
information is gained, the model is updated to better match reality. As the model changes,
the ongoing planning process will gradually compute a different way of behaving to match
the new model.

Exercise 8.1 The nonplanning method looks particularly poor in Figure 8.3 because it is
a one-step method; a method using multi-step bootstrapping would do better. Do you
think one of the multi-step bootstrapping methods from Chapter 7 could do as well as
the Dyna method? Explain why or why not. |

8.3 When the Model Is Wrong

In the maze example presented in the previous section, the changes in the model were
relatively modest. The model started out empty, and was then filled only with exactly
correct information. In general, we cannot expect to be so fortunate. Models may be
incorrect because the environment is stochastic and only a limited number of samples
have been observed, or because the model was learned using function approximation that
has generalized imperfectly, or simply because the environment has changed and its new
behavior has not yet been observed. When the model is incorrect, the planning process is
likely to compute a suboptimal policy.

In some cases, the suboptimal policy computed by planning quickly leads to the
discovery and correction of the modeling error. This tends to happen when the model
is optimistic in the sense of predicting greater reward or better state transitions than
are actually possible. The planned policy attempts to exploit these opportunities and in
doing so discovers that they do not exist.

Example 8.2: Blocking Maze A maze example illustrating this relatively minor
kind of modeling error and recovery from it is shown in Figure 8.4. Initially, there is a
short path from start to goal, to the right of the barrier, as shown in the upper left of the
figure. After 1000 time steps, the short path is “blocked,” and a longer path is opened up
along the left-hand side of the barrier, as shown in upper right of the figure. The graph
shows average cumulative reward for a Dyna-Q agent and an enhanced Dyna-Q-+ agent
to be described shortly. The first part of the graph shows that both Dyna agents found
the short path within 1000 steps. When the environment changed, the graphs become
flat, indicating a period during which the agents obtained no reward because they were
wandering around behind the barrier. After a while, however, they were able to find the
new opening and the new optimal behavior.

Greater difficulties arise when the environment changes to become better than it was
before, and yet the formerly correct policy does not reveal the improvement. In these
cases the modeling error may not be detected for a long time, if ever.
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Figure 8.4: Average performance of Dyna agents on a blocking task. The left environment
was used for the first 1000 steps, the right environment for the rest. Dyna-Q+ is Dyna-Q with
an exploration bonus that encourages exploration. |

Example 8.3: Shortcut Maze
The problem caused by this kind of
environmental change is illustrated
by the maze example shown in Fig-
ure 8.5. Initially, the optimal path is
to go around the left side of the bar-
rier (upper left). After 3000 steps,
however, a shorter path is opened up
along the right side, without disturb-
ing the longer path (upper right).
The graph shows that the regular
Dyna-Q agent never switched to the
shortcut. In fact, it never realized
that it existed. Its model said that
there was no shortcut, so the more it
planned, the less likely it was to step
to the right and discover it. Even
with an e-greedy policy, it is very
unlikely that an agent will take so
many exploratory actions as to dis-
cover the shortcut.

L TsE T

400+

Cumulative
reward
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Figure 8.5: Average performance of Dyna agents on
a shortcut task. The left environment was used for the
first 3000 steps, the right environment for the rest.

|

The general problem here is another version of the conflict between exploration and
exploitation. In a planning context, exploration means trying actions that improve the
model, whereas exploitation means behaving in the optimal way given the current model.
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We want the agent to explore to find changes in the environment, but not so much that
performance is greatly degraded. As in the earlier exploration/exploitation conflict, there
probably is no solution that is both perfect and practical, but simple heuristics are often
effective.

The Dyna-Q-+ agent that did solve the shortcut maze uses one such heuristic. This
agent keeps track for each state—action pair of how many time steps have elapsed since
the pair was last tried in a real interaction with the environment. The more time that
has elapsed, the greater (we might presume) the chance that the dynamics of this pair
has changed and that the model of it is incorrect. To encourage behavior that tests
long-untried actions, a special “bonus reward” is given on simulated experiences involving
these actions. In particular, if the modeled reward for a transition is r, and the transition
has not been tried in 7 time steps, then planning updates are done as if that transition
produced a reward of r + k/7, for some small k. This encourages the agent to keep
testing all accessible state transitions and even to find long sequences of actions in order
to carry out such tests.! Of course all this testing has its cost, but in many cases, as in the
shortcut maze, this kind of computational curiosity is well worth the extra exploration.

Exercise 8.2 Why did the Dyna agent with exploration bonus, Dyna-Q+, perform
better in the first phase as well as in the second phase of the blocking and shortcut
experiments? O

Ezxercise 8.8 Careful inspection of Figure 8.5 reveals that the difference between Dyna-Q+
and Dyna-Q narrowed slightly over the first part of the experiment. What is the reason
for this? O

Ezxercise 8.4 (programming) The exploration bonus described above actually changes
the estimated values of states and actions. Is this necessary? Suppose the bonus x+/7
was used not in updates, but solely in action selection. That is, suppose the action
selected was always that for which Q(S, a) + k+/7(St, a) was maximal. Carry out a
gridworld experiment that tests and illustrates the strengths and weaknesses of this
alternate approach. O

Ezercise 8.5 How might the tabular Dyna-Q algorithm shown on page 164 be modified
to handle stochastic environments? How might this modification perform poorly on
changing environments such as considered in this section? How could the algorithm be
modified to handle stochastic environments and changing environments? O

8.4 Prioritized Sweeping

In the Dyna agents presented in the preceding sections, simulated transitions are started in
state—action pairs selected uniformly at random from all previously experienced pairs. But
a uniform selection is usually not the best; planning can be much more efficient if simulated
transitions and updates are focused on particular state—action pairs. For example, consider

1The Dyna-Q+ agent was changed in two other ways as well. First, actions that had never been
tried before from a state were allowed to be considered in the planning step (f) of the Tabular Dyna-Q
algorithm in the box above. Second, the initial model for such actions was that they would lead back to
the same state with a reward of zero.
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what happens during the second episode of the first maze task (Figure 8.3). At the
beginning of the second episode, only the state—action pair leading directly into the goal
has a positive value; the values of all other pairs are still zero. This means that it is
pointless to perform updates along almost all transitions, because they take the agent
from one zero-valued state to another, and thus the updates would have no effect. Only
an update along a transition into the state just prior to the goal, or from it, will change
any values. If simulated transitions are generated uniformly, then many wasteful updates
will be made before stumbling onto one of these useful ones. As planning progresses, the
region of useful updates grows, but planning is still far less efficient than it would be if
focused where it would do the most good. In the much larger problems that are our real
objective, the number of states is so large that an unfocused search would be extremely
inefficient.

This example suggests that search might be usefully focused by working backward from
goal states. Of course, we do not really want to use any methods specific to the idea of
“goal state.” We want methods that work for general reward functions. Goal states are
just a special case, convenient for stimulating intuition. In general, we want to work back
not just from goal states but from any state whose value has changed. Suppose that the
values are initially correct given the model, as they were in the maze example prior to
discovering the goal. Suppose now that the agent discovers a change in the environment
and changes its estimated value of one state, either up or down. Typically, this will imply
that the values of many other states should also be changed, but the only useful one-step
updates are those of actions that lead directly into the one state whose value has been
changed. If the values of these actions are updated, then the values of the predecessor
states may change in turn. If so, then actions leading into them need to be updated, and
then their predecessor states may have changed. In this way one can work backward
from arbitrary states that have changed in value, either performing useful updates or
terminating the propagation. This general idea might be termed backward focusing of
planning computations.

As the frontier of useful updates propagates backward, it often grows rapidly, producing
many state—action pairs that could usefully be updated. But not all of these will be
equally useful. The values of some states may have changed a lot, whereas others may
have changed little. The predecessor pairs of those that have changed a lot are more
likely to also change a lot. In a stochastic environment, variations in estimated transition
probabilities also contribute to variations in the sizes of changes and in the urgency with
which pairs need to be updated. It is natural to prioritize the updates according to a
measure of their urgency, and perform them in order of priority. This is the idea behind
prioritized sweeping. A queue is maintained of every state—action pair whose estimated
value would change nontrivially if updated , prioritized by the size of the change. When
the top pair in the queue is updated, the effect on each of its predecessor pairs is computed.
If the effect is greater than some small threshold, then the pair is inserted in the queue
with the new priority (if there is a previous entry of the pair in the queue, then insertion
results in only the higher priority entry remaining in the queue). In this way the effects
of changes are efficiently propagated backward until quiescence. The full algorithm for
the case of deterministic environments is given in the box on the next page.
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Prioritized sweeping for a deterministic environment

Initialize Q(s,a), Model(s,a), for all s, a, and PQueue to empty
Loop forever:
(a) S « current (nonterminal) state

b) A < policy(S, Q)
¢) Take action A; observe resultant reward, R, and state, S’
d) Model(S,A) + R, S’

)
)

P <+ |R + ymax, Q(S’,a) — Q(S, 4)|.
f) if P > 0, then insert S, A into PQueue with priority P
g) Loop repeat n times, while PQueue is not empty:
S, A < first(PQueue)
R, S’ < Model(S, A)
Q(S,A) + Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]
Loop for all S, A predicted to lead to S:
R « predicted reward for S, A, S
P+ |R + ymax, Q(S,a) — Q(S, A)|.
if P > 0 then insert S, A into PQueue with priority P

(
(
(
(e
(
(

Example 8.4: Prioritized Sweeping
on Mazes Prioritized sweeping has been 107
found to dramatically increase the speed

at which optimal solutions are found in 10 Dyna-Q
magze tasks, often by a factor of 5 to 10. S

A typical example is shown to the right. Updates 7

These data are for a sequence of maze until 104 Prioritized
tasks of exactly the same structure as the  optimal sweeping

one shown in Figure 8.2, except that they — solution o3
vary in the grid resolution. Prioritized

sweeping maintained a decisive advantage 107

over unprioritized Dyna-Q. Both systems 0 S
made at most n = 5 updates per environ- 0 47 94 186 376 752 1504 3008 6016
mental interaction. Adapted from Peng Gridworld size (#states)

and Williams (1993). []

Extensions of prioritized sweeping to stochastic environments are straightforward. The
model is maintained by keeping counts of the number of times each state—action pair has
been experienced and of what the next states were. It is natural then to update each pair
not with a sample update, as we have been using so far, but with an expected update,
taking into account all possible next states and their probabilities of occurring.

Prioritized sweeping is just one way of distributing computations to improve planning
efficiency, and probably not the best way. One of prioritized sweeping’s limitations is that
it uses expected updates, which in stochastic environments may waste lots of computation
on low-probability transitions. As we show in the following section, sample updates
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Example 8.5 Prioritized Sweeping for Rod Maneuvering

The objective in this task is to
maneuver a rod around some awk-
wardly placed obstacles within a
limited rectangular work space to a
goal position in the fewest number
of steps. The rod can be translated
along its long axis or perpendicu-
lar to that axis, or it can be ro-
tated in either direction around its
center. The distance of each move-
ment is approximately 1/20 of the
work space, and the rotation incre-
ment is 10 degrees. Translations
are deterministic and quantized to
one of 20 x 20 positions. To the
right is shown the obstacles and the
shortest solution from start to goal,
found by prioritized sweeping. This problem is deterministic, but has four actions
and 14,400 potential states (some of these are unreachable because of the obstacles).
This problem is probably too large to be solved with unprioritized methods. Figure
reprinted from Moore and Atkeson (1993).

can in many cases get closer to the true value function with less computation despite
the variance introduced by sampling. Sample updates can win because they break the
overall backing-up computation into smaller pieces—those corresponding to individual
transitions—which then enables it to be focused more narrowly on the pieces that will
have the largest impact. This idea was taken to what may be its logical limit in the “small
backups” introduced by van Seijen and Sutton (2013). These are updates along a single
transition, like a sample update, but based on the probability of the transition without
sampling, as in an expected update. By selecting the order in which small updates
are done it is possible to greatly improve planning efficiency beyond that possible with
prioritized sweeping.

We have suggested in this chapter that all kinds of state-space planning can be viewed
as sequences of value updates, varying only in the type of update, expected or sample,
large or small, and in the order in which the updates are done. In this section we have
emphasized backward focusing, but this is just one strategy. For example, another would
be to focus on states according to how easily they can be reached from the states that
are visited frequently under the current policy, which might be called forward focusing.
Peng and Williams (1993) and Barto, Bradtke and Singh (1995) have explored versions
of forward focusing, and the methods introduced in the next few sections take it to an
extreme form.
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8.5 Expected vs. Sample Updates

The examples in the previous sections give some idea of the range of possibilities for
combining methods of learning and planning. In the rest of this chapter, we analyze some
of the component ideas involved, starting with the relative advantages of expected and
sample updates.

Much of this book has been about different kinds of value-function updates, and we
have considered a great many varieties. Focusing for the moment on one-step updates,
they vary primarily along three binary dimensions. The first two dimensions are whether
they update state values or action values and whether they estimate the value for the
optimal policy or for an arbitrary given policy. These two dimensions give rise to four
classes of updates for approximating the four value functions, g, v«, ¢r, and v;. The

other binary dimension is whether the
updates are expected updates, consider-
ing all possible events that might hap-
pen, or sample updates, considering a
single sample of what might happen.
These three binary dimensions give rise
to eight cases, seven of which corre-
spond to specific algorithms, as shown
in the figure to the right. (The eighth
case does not seem to correspond to
any useful update.) Any of these one-
step updates can be used in planning
methods. The Dyna-Q agents discussed
earlier use ¢. sample updates, but they
could just as well use g, expected up-
dates, or either expected or sample ¢,
updates. The Dyna-AC system uses v,
sample updates together with a learning
policy structure (as in Chapter 13). For
stochastic problems, prioritized sweep-
ing is always done using one of the ex-
pected updates.

When we introduced one-step sam-
ple updates in Chapter 6, we presented
them as substitutes for expected up-
dates. In the absence of a distribution
model, expected updates are not pos-
sible, but sample updates can be done
using sample transitions from the envi-
ronment or a sample model. Implicit in
that point of view is that expected up-
dates, if possible, are preferable to sam-
ple updates. But are they? Expected
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Figure 8.6: Backup diagrams for all the one-step

updates considered in this book.
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updates certainly yield a better estimate because they are uncorrupted by sampling error,
but they also require more computation, and computation is often the limiting resource
in planning. To properly assess the relative merits of expected and sample updates for
planning we must control for their different computational requirements.

For concreteness, consider the expected and sample updates for approximating g,
and the special case of discrete states and actions, a table-lookup representation of
the approximate value function, @, and a model in the form of estimated dynamics,
p(s’,7|s,a). The expected update for a state—action pair, s, a, is:

Q(s,a) « Zﬁ(s',r|s,a) |:’I“—|—’}/H}3XQ(S/,CL/):|. (8.1)

s',r

The corresponding sample update for s, a, given a sample next state and reward, S’ and
R (from the model), is the Q-learning-like update:

Q(s,a) < Q(s,a) + a[R + 7y max Q(S',ad") — Q(s, a)}, (8.2)

where « is the usual positive step-size parameter.

The difference between these expected and sample updates is significant to the extent
that the environment is stochastic, specifically, to the extent that, given a state and
action, many possible next states may occur with various probabilities. If only one next
state is possible, then the expected and sample updates given above are identical (taking
a =1). If there are many possible next states, then there may be significant differences.
In favor of the expected update is that it is an exact computation, resulting in a new
Q(s,a) whose correctness is limited only by the correctness of the Q(s,a’) at successor
states. The sample update is in addition affected by sampling error. On the other hand,
the sample update is cheaper computationally because it considers only one next state,
not all possible next states. In practice, the computation required by update operations
is usually dominated by the number of state—action pairs at which @ is evaluated. For a
particular starting pair, s, a, let b be the branching factor (i.e., the number of possible
next states, s’, for which p(s’|s,a) > 0). Then an expected update of this pair requires
roughly b times as much computation as a sample update.

If there is enough time to complete an expected update, then the resulting estimate is
generally better than that of b sample updates because of the absence of sampling error.
But if there is insufficient time to complete an expected update, then sample updates are
always preferable because they at least make some improvement in the value estimate
with fewer than b updates. In a large problem with many state-action pairs, we are often
in the latter situation. With so many state—action pairs, expected updates of all of them
would take a very long time. Before that we may be much better off with a few sample
updates at many state—action pairs than with expected updates at a few pairs. Given a
unit of computational effort, is it better devoted to a few expected updates or to b times
as many sample updates?

Figure 8.7 shows the results of an analysis that suggests an answer to this question. It
shows the estimation error as a function of computation time for expected and sample
updates for a variety of branching factors, b. The case considered is that in which all
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sample expected
updates updates
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Figure 8.7: Comparison of efficiency of expected and sample updates.

b successor states are equally likely and in which the error in the initial estimate is
1. The values at the next states are assumed correct, so the expected update reduces
the error to zero upon its completion. In this case, sample updates reduce the error

according to bg—tl where t is the number of sample updates that have been performed

(assuming sample averages, i.e., « = 1/t). The key observation is that for moderately
large b the error falls dramatically with a tiny fraction of b updates. For these cases,
many state—action pairs could have their values improved dramatically, to within a few
percent of the effect of an expected update, in the same time that a single state—action
pair could undergo an expected update.

The advantage of sample updates shown in Figure 8.7 is probably an underestimate of
the real effect. In a real problem, the values of the successor states would be estimates
that are themselves updated. By causing estimates to be more accurate sooner, sample
updates will have a second advantage in that the values backed up from the successor
states will be more accurate. These results suggest that sample updates are likely to be
superior to expected updates on problems with large stochastic branching factors and
too many states to be solved exactly.

Exercise 8.6 The analysis above assumed that all of the b possible next states were
equally likely to occur. Suppose instead that the distribution was highly skewed, that
some of the b states were much more likely to occur than most. Would this strengthen or
weaken the case for sample updates over expected updates? Support your answer. [

8.6 Trajectory Sampling
In this section we compare two ways of distributing updates. The classical approach, from

dynamic programming, is to perform sweeps through the entire state (or state-action)
space, updating each state (or state—action pair) once per sweep. This is problematic
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on large tasks because there may not be time to complete even one sweep. In many
tasks the vast majority of the states are irrelevant because they are visited only under
very poor policies or with very low probability. Exhaustive sweeps implicitly devote
equal time to all parts of the state space rather than focusing where it is needed. As we
discussed in Chapter 4, exhaustive sweeps and the equal treatment of all states that they
imply are not necessary properties of dynamic programming. In principle, updates can
be distributed any way one likes (to assure convergence, all states or state—action pairs
must be visited in the limit an infinite number of times; although an exception to this is
discussed in Section 8.7 below), but in practice exhaustive sweeps are often used.

The second approach is to sample from the state or state—action space according
to some distribution. One could sample uniformly, as in the Dyna-Q agent, but this
would suffer from some of the same problems as exhaustive sweeps. More appealing
is to distribute updates according to the on-policy distribution, that is, according to
the distribution observed when following the current policy. One advantage of this
distribution is that it is easily generated; one simply interacts with the model, following
the current policy. In an episodic task, one starts in a start state (or according to the
starting-state distribution) and simulates until the terminal state. In a continuing task,
one starts anywhere and just keeps simulating. In either case, sample state transitions
and rewards are given by the model, and sample actions are given by the current policy.
In other words, one simulates explicit individual trajectories and performs updates at the
state or state—action pairs encountered along the way. We call this way of generating
experience and updates trajectory sampling.

It is hard to imagine any efficient way of distributing updates according to the on-policy
distribution other than by trajectory sampling. If one had an explicit representation
of the on-policy distribution, then one could sweep through all states, weighting the
update of each according to the on-policy distribution, but this leaves us again with all
the computational costs of exhaustive sweeps. Possibly one could sample and update
individual state—action pairs from the distribution, but even if this could be done efficiently,
what benefit would this provide over simulating trajectories? Even knowing the on-policy
distribution in an explicit form is unlikely. The distribution changes whenever the policy
changes, and computing the distribution requires computation comparable to a complete
policy evaluation. Consideration of such other possibilities makes trajectory sampling
seem both efficient and elegant.

Is the on-policy distribution of updates a good one? Intuitively it seems like a good
choice, at least better than the uniform distribution. For example, if you are learning to
play chess, you study positions that might arise in real games, not random positions of
chess pieces. The latter may be valid states, but to be able to accurately value them is a
different skill from evaluating positions in real games. We will also see in Part II that the
on-policy distribution has significant advantages when function approximation is used.
Whether or not function approximation is used, one might expect on-policy focusing to
significantly improve the speed of planning.

Focusing on the on-policy distribution could be beneficial because it causes vast,
uninteresting parts of the space to be ignored, or it could be detrimental because it causes
the same old parts of the space to be updated over and over. We conducted a small



176 Chapter 8: Planning and Learning with Tabular Methods

experiment to assess the effect empirically. To isolate the effect of the update distribution,
we used entirely one-step expected tabular updates, as defined by (8.1). In the uniform
case, we cycled through all state—action pairs, updating each in place, and in the on-policy
case we simulated episodes, all starting in the same state, updating each state—action pair
that occurred under the current e-greedy policy (¢=0.1). The tasks were undiscounted
episodic tasks, generated randomly as follows. From each of the |§| states, two actions
were possible, each of which resulted in one of b next states, all equally likely, with a
different random selection of b states for each state—action pair. The branching factor, b,
was the same for all state—action pairs. In addition, on all transitions there was a 0.1
probability of transition to the terminal state, ending the episode. The expected reward
on each transition was selected from a Gaussian distribution with mean 0 and variance 1.
At any point in the planning process

one can stop and exhaustively compute

v#(80), the true value of the start state N
under the greedy policy, 7, given the cur-

rent action-value function (), as an indi-

cation of how well the agent would doon  vajue of -
a new episode on which it acted greed- start state
ily (all the while assuming the model is under

greedy
correct). policy ]
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The upper part of the figure to
the right shows results averaged over
200 sample tasks with 1000 states and
branching factors of 1, 3, and 10. The
quality of the policies found is plotted as
a function of the number of expected up-
dates completed. In all cases, sampling
according to the on-policy distribution
resulted in faster planning initially and
retarded planning in the long run. The 10,000 STATES
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the start state. If there are many states and a small branching factor, this effect will be
large and long-lasting. In the long run, focusing on the on-policy distribution may hurt
because the commonly occurring states all already have their correct values. Sampling
them is useless, whereas sampling other states may actually perform some useful work.
This presumably is why the exhaustive, unfocused approach does better in the long run,
at least for small problems. These results are not conclusive because they are only for
problems generated in a particular, random way, but they do suggest that sampling
according to the on-policy distribution can be a great advantage for large problems, in
particular for problems in which a small subset of the state—action space is visited under
the on-policy distribution.

Ezxercise 8.7 Some of the graphs in Figure 8.8 seem to be scalloped in their early portions,
particularly the upper graph for b = 1 and the uniform distribution. Why do you think
this is? What aspects of the data shown support your hypothesis? O

Ezxercise 8.8 (programming) Replicate the experiment whose results are shown in the
lower part of Figure 8.8, then try the same experiment but with b = 3. Discuss the
meaning of your results. O

8.7 Real-time Dynamic Programming

Real-time dynamic programming, or RTDP, is an on-policy trajectory-sampling version of
the value-iteration algorithm of dynamic programming (DP). Because it is closely related
to conventional sweep-based policy iteration, RTDP illustrates in a particularly clear way
some of the advantages that on-policy trajectory sampling can provide. RTDP updates
the values of states visited in actual or simulated trajectories by means of expected
tabular value-iteration updates as defined by (4.10). It is basically the algorithm that
produced the on-policy results shown in Figure 8.8.

The close connection between RTDP and conventional DP makes it possible to derive
some theoretical results by adapting existing theory. RTDP is an example of an asyn-
chronous DP algorithm as described in Section 4.5. Asynchronous DP algorithms are
not organized in terms of systematic sweeps of the state set; they update state values in
any order whatsoever, using whatever values of other states happen to be available. In
RTDP, the update order is dictated by the order states are visited in real or simulated
trajectories.

If trajectories can start only from a designated Irrelevant States:
set of start states, and if you are interested in unreachable from any start state
the prediction problem for a given policy, then on- Start States under any optimal policy
policy trajectory sampling allows the algorithm to
completely skip states that cannot be reached by
the given policy from any of the start states: such
states are irrelevant to the prediction problem.

For a control problem, where the goal is to find
an optimal policy instead of evaluating a given reachagl?frxinstoit:if:n stato
policy, there might well be states that cannot be under some optimal policy



178 Chapter 8: Planning and Learning with Tabular Methods

reached by any optimal policy from any of the start states, and there is no need to specify
optimal actions for these irrelevant states. What is needed is an optimal partial policy,
meaning a policy that is optimal for the relevant states but can specify arbitrary actions,
or even be undefined, for the irrelevant states.

But finding such an optimal partial policy with an on-policy trajectory-sampling
control method, such as Sarsa (Section 6.4), in general requires visiting all state—action
pairs—even those that will turn out to be irrelevant—an infinite number of times. This
can be done, for example, by using exploring starts (Section 5.3). This is true for RTDP
as well: for episodic tasks with exploring starts, RTDP is an asynchronous value-iteration
algorithm that converges to optimal polices for discounted finite MDPs (and for the
undiscounted case under certain conditions). Unlike the situation for a prediction problem,
it is generally not possible to stop updating any state or state—action pair if convergence
to an optimal policy is important.

The most interesting result for RTDP is that for certain types of problems satisfying
reasonable conditions, RTDP is guaranteed to find a policy that is optimal on the relevant
states without visiting every state infinitely often, or even without visiting some states at
all. Indeed, in some problems, only a small fraction of the states need to be visited. This
can be a great advantage for problems with very large state sets, where even a single
sweep may not be feasible.

The tasks for which this result holds are undiscounted episodic tasks for MDPs with
absorbing goal states that generate zero rewards, as described in Section 3.4. At every step
of a real or simulated trajectory, RTDP selects a greedy action (breaking ties randomly)
and applies the expected value-iteration update operation to the current state. It can
also update the values of an arbitrary collection of other states at each step; for example,
it can update the values of states visited in a limited-horizon look-ahead search from the
current state.

For these problems, with each episode beginning in a state randomly chosen from the
set of start states and ending at a goal state, RTDP converges with probability one to a
policy that is optimal for all the relevant states provided: 1) the initial value of every
goal state is zero, 2) there exists at least one policy that guarantees that a goal state
will be reached with probability one from any start state, 3) all rewards for transitions
from non-goal states are strictly negative, and 4) all the initial values are equal to, or
greater than, their optimal values (which can be satisfied by simply setting the initial
values of all states to zero). This result was proved by Barto, Bradtke, and Singh (1995)
by combining results for asynchronous DP with results about a heuristic search algorithm
known as learning real-time A* due to Korf (1990).

Tasks having these properties are examples of stochastic optimal path problems, which
are usually stated in terms of cost minimization instead of as reward maximization as
we do here. Maximizing the negative returns in our version is equivalent to minimizing
the costs of paths from a start state to a goal state. Examples of this kind of task are
minimum-time control tasks, where each time step required to reach a goal produces a
reward of —1, or problems like the Golf example in Section 3.5, whose objective is to hit
the hole with the fewest strokes.
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Example 8.6: RTDP on the Racetrack The racetrack problem of Exercise 5.12
(page 111) is a stochastic optimal path problem. Comparing RTDP and the conventional
DP value iteration algorithm on an example racetrack problem illustrates some of the
advantages of on-policy trajectory sampling.

Recall from the exercise that an agent has to learn how to drive a car around a turn
like those shown in Figure 5.5 and cross the finish line as quickly as possible while staying
on the track. Start states are all the zero-speed states on the starting line; the goal states
are all the states that can be reached in one time step by crossing the finish line from
inside the track. Unlike Exercise 5.12, here there is no limit on the car’s speed, so the
state set is potentially infinite. However, the set of states that can be reached from the
set of start states via any policy is finite and can be considered to be the state set of the
problem. Each episode begins in a randomly selected start state and ends when the car
crosses the finish line. The rewards are —1 for each step until the car crosses the finish
line. If the car hits the track boundary, it is moved back to a random start state, and the
episode continues.

A racetrack similar to the small racetrack on the left of Figure 5.5 has 9,115 states
reachable from start states by any policy, only 599 of which are relevant, meaning that
they are reachable from some start state via some optimal policy. (The number of relevant
states was estimated by counting the states visited while executing optimal actions for
107 episodes.)

The table below compares solving this task by conventional DP and by RTDP. These
results are averages over 25 runs, each begun with a different random number seed.
Conventional DP in this case is value iteration using exhaustive sweeps of the state set,
with values updated one state at a time in place, meaning that the update for each state
uses the most recent values of the other states (This is the Gauss-Seidel version of value
iteration, which was found to be approximately twice as fast as the Jacobi version on
this problem. See Section 4.8.) No special attention was paid to the ordering of the
updates; other orderings could have produced faster convergence. Initial values were all
zero for each run of both methods. DP was judged to have converged when the maximum
change in a state value over a sweep was less than 104, and RTDP was judged to have
converged when the average time to cross the finish line over 20 episodes appeared to
stabilize at an asymptotic number of steps. This version of RTDP updated only the value
of the current state on each step.

DP RTDP
Average computation to convergence 28 sweeps 4000 episodes
Average number of updates to convergence 252,784 127,600
Average number of updates per episode — 31.9
% of states updated < 100 times — 98.45
% of states updated < 10 times — 80.51
% of states updated 0 times — 3.18

Both methods produced policies averaging between 14 and 15 steps to cross the finish
line, but RTDP required only roughly half of the updates that DP did. This is the result
of RTDP’s on-policy trajectory sampling. Whereas the value of every state was updated
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in each sweep of DP, RTDP focused updates on fewer states. In an average run, RTDP
updated the values of 98.45% of the states no more than 100 times and 80.51% of the
states no more than 10 times; the values of about 290 states were not updated at all in
an average run. ]

Another advantage of RTDP is that as the value function approaches the optimal
value function v,, the policy used by the agent to generate trajectories approaches an
optimal policy because it is always greedy with respect to the current value function.
This is in contrast to the situation in conventional value iteration. In practice, value
iteration terminates when the value function changes by only a small amount in a sweep,
which is how we terminated it to obtain the results in the table above. At this point,
the value function closely approximates v,, and a greedy policy is close to an optimal
policy. However, it is possible that policies that are greedy with respect to the latest
value function were optimal, or nearly so, long before value iteration terminates. (Recall
from Chapter 4 that optimal policies can be greedy with respect to many different
value functions, not just v,.) Checking for the emergence of an optimal policy before
value iteration converges is not a part of the conventional DP algorithm and requires
considerable additional computation.

In the racetrack example, by running many test episodes after each DP sweep, with
actions selected greedily according to the result of that sweep, it was possible to estimate
the earliest point in the DP computation at which the approximated optimal evaluation
function was good enough so that the corresponding greedy policy was nearly optimal.
For this racetrack, a close-to-optimal policy emerged after 15 sweeps of value iteration, or
after 136,725 value-iteration updates. This is considerably less than the 252,784 updates
DP needed to converge to v, but sill more than the 127,600 updates RTDP required.

Although these simulations are certainly not definitive comparisons of the RTDP with
conventional sweep-based value iteration, they illustrate some of advantages of on-policy
trajectory sampling. Whereas conventional value iteration continued to update the value
of all the states, RTDP strongly focused on subsets of the states that were relevant to
the problem’s objective. This focus became increasingly narrow as learning continued.
Because the convergence theorem for RTDP applies to the simulations, we know that
RTDP eventually would have focused only on relevant states, i.e., on states making up
optimal paths. RTDP achieved nearly optimal control with about 50% of the computation
required by sweep-based value iteration.

8.8 Planning at Decision Time

Planning can be used in at least two ways. The one we have considered so far in this
chapter, typified by dynamic programming and Dyna, is to use planning to gradually
improve a policy or value function on the basis of simulated experience obtained from
a model (either a sample or a distribution model). Selecting actions is then a matter
of comparing the current state’s action values obtained from a table in the tabular
case we have thus far considered, or by evaluating a mathematical expression in the
approximate methods we consider in Part IT below. Well before an action is selected for
any current state Sy, planning has played a part in improving the table entries, or the
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mathematical expression, needed to select the action for many states, including S;. Used
this way, planning is not focussed on the current state. We call planning used in this way
background planning.

The other way to use planning is to begin and complete it after encountering each
new state S;, as a computation whose output is the selection of a single action A;; on
the next step planning begins anew with Siy1 to produce As41, and so on. The simplest,
and almost degenerate, example of this use of planning is when only state values are
available, and an action is selected by comparing the values of model-predicted next states
for each action (or by comparing the values of afterstates as in the tic-tac-toe example
in Chapter 1). More generally, planning used in this way can look much deeper than
one-step-ahead and evaluate action choices leading to many different predicted state and
reward trajectories. Unlike the first use of planning, here planning focuses on a particular
state. We call this deciston-time planning.

These two ways of thinking about planning—using simulated experience to gradually
improve a policy or value function, or using simulated experience to select an action for
the current state—can blend together in natural and interesting ways, but they have
tended to be studied separately, and that is a good way to first understand them. Let us
now take a closer look at decision-time planning.

Even when planning is only done at decision time, we can still view it, as we did
in Section 8.1, as proceeding from simulated experience to updates and values, and
ultimately to a policy. It is just that now the values and policy are specific to the current
state and the action choices available there, so much so that the values and policy created
by the planning process are typically discarded after being used to select the current
action. In many applications this is not a great loss because there are very many states
and we are unlikely to return to the same state for a long time. In general, one may
want to do a mix of both: focus planning on the current state and store the results
of planning so as to be that much farther along should one return to the same state
later. Decision-time planning is most useful in applications in which fast responses are
not required. In chess playing programs, for example, one may be permitted seconds or
minutes of computation for each move, and strong programs may plan dozens of moves
ahead within this time. On the other hand, if low latency action selection is the priority,
then one is generally better off doing planning in the background to compute a policy
that can then be rapidly applied to each newly encountered state.

8.9 Heuristic Search

The classical state-space planning methods in artificial intelligence are decision-time
planning methods collectively known as heuristic search. In heuristic search, for each
state encountered, a large tree of possible continuations is considered. The approximate
value function is applied to the leaf nodes and then backed up toward the current state
at the root. The backing up within the search tree is just the same as in the expected
updates with maxes (those for v, and ¢.) discussed throughout this book. The backing
up stops at the state—action nodes for the current state. Once the backed-up values of
these nodes are computed, the best of them is chosen as the current action, and then all
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backed-up values are discarded.

In conventional heuristic search no effort is made to save the backed-up values by
changing the approximate value function. In fact, the value function is generally designed
by people and never changed as a result of search. However, it is natural to consider
allowing the value function to be improved over time, using either the backed-up values
computed during heuristic search or any of the other methods presented throughout
this book. In a sense we have taken this approach all along. Our greedy, e-greedy, and
UCB (Section 2.7) action-selection methods are not unlike heuristic search, albeit on a
smaller scale. For example, to compute the greedy action given a model and a state-value
function, we must look ahead from each possible action to each possible next state, take
into account the rewards and estimated values, and then pick the best action. Just as
in conventional heuristic search, this process computes backed-up values of the possible
actions, but does not attempt to save them. Thus, heuristic search can be viewed as an
extension of the idea of a greedy policy beyond a single step.

The point of searching deeper than one step is to obtain better action selections. If one
has a perfect model and an imperfect action-value function, then in fact deeper search
will usually yield better policies.? Certainly, if the search is all the way to the end of
the episode, then the effect of the imperfect value function is eliminated, and the action
determined in this way must be optimal. If the search is of sufficient depth k such that +*
is very small, then the actions will be correspondingly near optimal. On the other hand,
the deeper the search, the more computation is required, usually resulting in a slower
response time. A good example is provided by Tesauro’s grandmaster-level backgammon
player, TD-Gammon (Section 16.1). This system used TD learning to learn an afterstate
value function through many games of self-play, using a form of heuristic search to make
its moves. As a model, TD-Gammon used a priori knowledge of the probabilities of dice
rolls and the assumption that the opponent always selected the actions that TD-Gammon
rated as best for it. Tesauro found that the deeper the heuristic search, the better the
moves made by TD-Gammon, but the longer it took to make each move. Backgammon
has a large branching factor, yet moves must be made within a few seconds. It was
only feasible to search ahead selectively a few steps, but even so the search resulted in
significantly better action selections.

We should not overlook the most obvious way in which heuristic search focuses updates:
on the current state. Much of the effectiveness of heuristic search is due to its search tree
being tightly focused on the states and actions that might immediately follow the current
state. You may spend more of your life playing chess than checkers, but when you play
checkers, it pays to think about checkers and about your particular checkers position,
your likely next moves, and successor positions. No matter how you select actions, it
is these states and actions that are of highest priority for updates and where you most
urgently want your approximate value function to be accurate. Not only should your
computation be preferentially devoted to imminent events, but so should your limited
memory resources. In chess, for example, there are far too many possible positions to
store distinct value estimates for each of them, but chess programs based on heuristic
search can easily store distinct estimates for the millions of positions they encounter

2There are interesting exceptions to this (see, e.g., Pearl, 1984).
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looking ahead from a single position. This great focusing of memory and computational
resources on the current decision is presumably the reason why heuristic search can be so
effective.

The distribution of updates can be altered in similar ways to focus on the current
state and its likely successors. As a limiting case we might use exactly the methods of
heuristic search to construct a search tree, and then perform the individual, one-step
updates from bottom up, as suggested by Figure 8.9. If the updates are ordered in this
way and a tabular representation is used, then exactly the same overall update would
be achieved as in depth-first heuristic search. Any state-space search can be viewed in
this way as the piecing together of a large number of individual one-step updates. Thus,
the performance improvement observed with deeper searches is not due to the use of
multistep updates as such. Instead, it is due to the focus and concentration of updates
on states and actions immediately downstream from the current state. By devoting a
large amount of computation specifically relevant to the candidate actions, decision-time
planning can produce better decisions than can be produced by relying on unfocused
updates.
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Figure 8.9: Heuristic search can be implemented as a sequence of one-step updates (shown
here outlined in blue) backing up values from the leaf nodes toward the root. The ordering
shown here is for a selective depth-first search.

8.10 Rollout Algorithms

Rollout algorithms are decision-time planning algorithms based on Monte Carlo control
applied to simulated trajectories that all begin at the current environment state. They
estimate action values for a given policy by averaging the returns of many simulated
trajectories that start with each possible action and then follow the given policy. When
the action-value estimates are considered to be accurate enough, the action (or one of the
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actions) having the highest estimated value is executed, after which the process is carried
out anew from the resulting next state. As explained by Tesauro and Galperin (1997),
who experimented with rollout algorithms for playing backgammon, the term “rollout”
comes from estimating the value of a backgammon position by playing out, i.e., “rolling
out,” the position many times to the game’s end with randomly generated sequences of
dice rolls, where the moves of both players are made by some fixed policy.

Unlike the Monte Carlo control algorithms described in Chapter 5, the goal of a
rollout algorithm is not to estimate a complete optimal action-value function, ¢, or a
complete action-value function, ¢,, for a given policy w. Instead, they produce Monte
Carlo estimates of action values only for each current state and for a given policy usually
called the rollout policy. As decision-time planning algorithms, rollout algorithms make
immediate use of these action-value estimates, then discard them. This makes rollout
algorithms relatively simple to implement because there is no need to sample outcomes
for every state-action pair, and there is no need to approximate a function over either
the state space or the state-action space.

What then do rollout algorithms accomplish? The policy improvement theorem
described in Section 4.2 tells us that given any two policies 7 and 7’ that are identical
except that 7'(s) = a # 7(s) for some state s, if ¢, (s,a) > v.(s), then policy 7’ is as good
as, or better, than . Moreover, if the inequality is strict, then #’ is in fact better than .
This applies to rollout algorithms where s is the current state and 7 is the rollout policy.
Averaging the returns of the simulated trajectories produces estimates of ¢, (s,a’) for
each action a’ € A(s). Then the policy that selects an action in s that maximizes these
estimates and thereafter follows 7 is a good candidate for a policy that improves over
7. The result is like one step of the policy-iteration algorithm of dynamic programming
discussed in Section 4.3 (though it is more like one step of asynchronous value iteration
described in Section 4.5 because it changes the action for just the current state).

In other words, the aim of a rollout algorithm is to improve upon the rollout policy;
not to find an optimal policy. Experience has shown that rollout algorithms can be
surprisingly effective. For example, Tesauro and Galperin (1997) were surprised by the
dramatic improvements in backgammon playing ability produced by the rollout method.
In some applications, a rollout algorithm can produce good performance even if the
rollout policy is completely random. But the performance of the improved policy depends
on properties of the rollout policy and the ranking of actions produced by the Monte
Carlo value estimates. Intuition suggests that the better the rollout policy and the more
accurate the value estimates, the better the policy produced by a rollout algorithm is
likely be (but see Gelly and Silver, 2007).

This involves important tradeoffs because better rollout policies typically mean that
more time is needed to simulate enough trajectories to obtain good value estimates.
As decision-time planning methods, rollout algorithms usually have to meet strict time
constraints. The computation time needed by a rollout algorithm depends on the number
of actions that have to be evaluated for each decision, the number of time steps in the
simulated trajectories needed to obtain useful sample returns, the time it takes the rollout
policy to make decisions, and the number of simulated trajectories needed to obtain good
Monte Carlo action-value estimates.



8.11. Monte Carlo Tree Search 185

Balancing these factors is important in any application of rollout methods, though there
are several ways to ease the challenge. Because the Monte Carlo trials are independent of
one another, it is possible to run many trials in parallel on separate processors. Another
approach is to truncate the simulated trajectories short of complete episodes, correcting
the truncated returns by means of a stored evaluation function (which brings into play
all that we have said about truncated returns and updates in the preceding chapters).
It is also possible, as Tesauro and Galperin (1997) suggest, to monitor the Monte Carlo
simulations and prune away candidate actions that are unlikely to turn out to be the
best, or whose values are close enough to that of the current best that choosing them
instead would make no real difference (though Tesauro and Galperin point out that this
would complicate a parallel implementation).

We do not ordinarily think of rollout algorithms as learning algorithms because they
do not maintain long-term memories of values or policies. However, these algorithms take
advantage of some of the features of reinforcement learning that we have emphasized
in this book. As instances of Monte Carlo control, they estimate action values by
averaging the returns of a collection of sample trajectories, in this case trajectories of
simulated interactions with a sample model of the environment. In this way they are
like reinforcement learning algorithms in avoiding the exhaustive sweeps of dynamic
programming by trajectory sampling, and in avoiding the need for distribution models
by relying on sample, instead of expected, updates. Finally, rollout algorithms take
advantage of the policy improvement property by acting greedily with respect to the
estimated action values.

8.11 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a recent and strikingly successful example of decision-
time planning. At its base, MCTS is a rollout algorithm as described above, but enhanced
by the addition of a means for accumulating value estimates obtained from the Monte
Carlo simulations in order to successively direct simulations toward more highly-rewarding
trajectories. MCTS is largely responsible for the improvement in computer Go from
a weak amateur level in 2005 to a grandmaster level (6 dan or more) in 2015. Many
variations of the basic algorithm have been developed, including a variant that we discuss
in Section 16.6 that was critical for the stunning 2016 victories of the program AlphaGo
over an 18-time world champion Go player. MCTS has proved to be effective in a wide
variety of competitive settings, including general game playing (e.g., see Finnsson and
Bjornsson, 2008; Genesereth and Thielscher, 2014), but it is not limited to games; it can
be effective for single-agent sequential decision problems if there is an environment model
simple enough for fast multistep simulation.

MCTS is executed after encountering each new state to select the agent’s action for
that state; it is executed again to select the action for the next state, and so on. As in a
rollout algorithm, each execution is an iterative process that simulates many trajectories
starting from the current state and running to a terminal state (or until discounting
makes any further reward negligible as a contribution to the return). The core idea
of MCTS is to successively focus multiple simulations starting at the current state by
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extending the initial portions of trajectories that have received high evaluations from
earlier simulations. MCTS does not have to retain approximate value functions or policies
from one action selection to the next, though in many implementations it retains selected
action values likely to be useful for its next execution.

For the most part, the actions in the simulated trajectories are generated using a simple
policy, usually called a rollout policy as it is for simpler rollout algorithms. When both
the rollout policy and the model do not require a lot of computation, many simulated
trajectories can be generated in a short period of time. As in any tabular Monte Carlo
method, the value of a state—action pair is estimated as the average of the (simulated)
returns from that pair. Monte Carlo value estimates are maintained only for the subset
of state—action pairs that are most likely to be reached in a few steps, which form a tree
rooted at the current state, as illustrated in Figure 8.10. MCTS incrementally extends
the tree by adding nodes representing states that look promising based on the results of
the simulated trajectories. Any simulated trajectory will pass through the tree and then
exit it at some leaf node. Outside the tree and at the leaf nodes the rollout policy is used
for action selections, but at the states inside the tree something better is possible. For
these states we have value estimates for of at least some of the actions, so we can pick
among them using an informed policy, called the tree policy, that balances exploration
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Figure 8.10: Monte Carlo Tree Search. When the environment changes to a new state, MCTS
executes as many iterations as possible before an action needs to be selected, incrementally
building a tree whose root node represents the current state. Each iteration consists of the four
operations Selection, Expansion (though possibly skipped on some iterations), Simulation,
and Backup, as explained in the text and illustrated by the bold arrows in the trees. Adapted
from Chaslot, Bakkes, Szita, and Spronck (2008).
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and exploitation. For example, the tree policy could select actions using an e-greedy or
UCB selection rule (Chapter 2).

In more detail, each iteration of a basic version of MCTS consists of the following four
steps as illustrated in Figure 8.10:

1. Selection. Starting at the root node, a tree policy based on the action values
attached to the edges of the tree traverses the tree to select a leaf node.

2. Expansion. On some iterations (depending on details of the application), the tree
is expanded from the selected leaf node by adding one or more child nodes reached
from the selected node via unexplored actions.

3. Simulation. From the selected node, or from one of its newly-added child nodes
(if any), simulation of a complete episode is run with actions selected by the rollout
policy. The result is a Monte Carlo trial with actions selected first by the tree
policy and beyond the tree by the rollout policy.

4. Backup. The return generated by the simulated episode is backed up to update,
or to initialize, the action values attached to the edges of the tree traversed by
the tree policy in this iteration of MCTS. No values are saved for the states and
actions visited by the rollout policy beyond the tree. Figure 8.10 illustrates this by
showing a backup from the terminal state of the simulated trajectory directly to the
state—action node in the tree where the rollout policy began (though in general, the
entire return over the simulated trajectory is backed up to this state—action node).

MCTS continues executing these four steps, starting each time at the tree’s root node,
until no more time is left, or some other computational resource is exhausted. Then,
finally, an action from the root node (which still represents the current state of the
environment) is selected according to some mechanism that depends on the accumulated
statistics in the tree; for example, it may be an action having the largest action value
of all the actions available from the root state, or perhaps the action with the largest
visit count to avoid selecting outliers. This is the action MCTS actually selects. After
the environment transitions to a new state, MCTS is run again, sometimes starting
with a tree of a single root node representing the new state, but often starting with a
tree containing any descendants of this node left over from the tree constructed by the
previous execution of MCTS; all the remaining nodes are discarded, along with the action
values associated with them.

MCTS was first proposed to select moves in programs playing two-person competitive
games, such as Go. For game playing, each simulated episode is one complete play of the
game in which both players select actions by the tree and rollout policies. Section 16.6
describes an extension of MCTS used in the AlphaGo program that combines the Monte
Carlo evaluations of MCTS with action values learned by a deep artificial neural network
via self-play reinforcement learning.

Relating MCTS to the reinforcement learning principles we describe in this book
provides some insight into how it achieves such impressive results. At its base, MCTS is
a decision-time planning algorithm based on Monte Carlo control applied to simulations
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that start from the root state; that is, it is a kind of rollout algorithm as described in
the previous section. It therefore benefits from online, incremental, sample-based value
estimation and policy improvement. Beyond this, it saves action-value estimates attached
to the tree edges and updates them using reinforcement learning’s sample updates. This
has the effect of focusing the Monte Carlo trials on trajectories whose initial segments
are common to high-return trajectories previously simulated. Further, by incrementally
expanding the tree, MCTS effectively grows a lookup table to store a partial action-value
function, with memory allocated to the estimated values of state—action pairs visited in
the initial segments of high-yielding sample trajectories. MCTS thus avoids the problem
of globally approximating an action-value function while it retains the benefit of using
past experience to guide exploration.

The striking success of decision-time planning by MCTS has deeply influenced artificial
intelligence, and many researchers are studying modifications and extensions of the basic
procedure for use in both games and single-agent applications.

8.12 Summary of the Chapter

Planning requires a model of the environment. A distribution model consists of the
probabilities of next states and rewards for possible actions; a sample model produces
single transitions and rewards generated according to these probabilities. Dynamic
programming requires a distribution model because it uses expected updates, which involve
computing expectations over all the possible next states and rewards. A sample model,
on the other hand, is what is needed to simulate interacting with the environment during
which sample updates, like those used by many reinforcement learning algorithms, can be
used. Sample models are generally much easier to obtain than distribution models.

We have presented a perspective emphasizing the surprisingly close relationships be-
tween planning optimal behavior and learning optimal behavior. Both involve estimating
the same value functions, and in both cases it is natural to update the estimates incre-
mentally, in a long series of small backing-up operations. This makes it straightforward
to integrate learning and planning processes simply by allowing both to update the same
estimated value function. In addition, any of the learning methods can be converted into
planning methods simply by applying them to simulated (model-generated) experience
rather than to real experience. In this case learning and planning become even more
similar; they are possibly identical algorithms operating on two different sources of
experience.

It is straightforward to integrate incremental planning methods with acting and model-
learning. Planning, acting, and model-learning interact in a circular fashion (as in
the diagram on page 162), each producing what the other needs to improve; no other
interaction among them is either required or prohibited. The most natural approach
is for all processes to proceed asynchronously and in parallel. If the processes must
share computational resources, then the division can be handled almost arbitrarily—by
whatever organization is most convenient and efficient for the task at hand.

In this chapter we have touched upon a number of dimensions of variation among
state-space planning methods. One dimension is the variation in the size of updates. The
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smaller the updates, the more incremental the planning methods can be. Among the
smallest updates are one-step sample updates, as in Dyna. Another important dimension
is the distribution of updates, that is, of the focus of search. Prioritized sweeping focuses
backward on the predecessors of states whose values have recently changed. On-policy
trajectory sampling focuses on states or state—action pairs that the agent is likely to
encounter when controlling its environment. This can allow computation to skip over
parts of the state space that are irrelevant to the prediction or control problem. Real-
time dynamic programming, an on-policy trajectory sampling version of value iteration,
illustrates some of the advantages this strategy has over conventional sweep-based policy
iteration.

Planning can also focus forward from pertinent states, such as states actually encoun-
tered during an agent-environment interaction. The most important form of this is when
planning is done at decision time, that is, as part of the action-selection process. Classical
heuristic search as studied in artificial intelligence is an example of this. Other examples
are rollout algorithms and Monte Carlo Tree Search that benefit from online, incremental,
sample-based value estimation and policy improvement.

8.13 Summary of Part I: Dimensions

This chapter concludes Part I of this book. In it we have tried to present reinforcement
learning not as a collection of individual methods, but as a coherent set of ideas cutting
across methods. Each idea can be viewed as a dimension along which methods vary. The
set of such dimensions spans a large space of possible methods. By exploring this space
at the level of dimensions we hope to obtain the broadest and most lasting understanding.
In this section we use the concept of dimensions in method space to recapitulate the view
of reinforcement learning developed so far in this book.

All of the methods we have explored so far in this book have three key ideas in common:
first, they all seek to estimate value functions; second, they all operate by backing up
values along actual or possible state trajectories; and third, they all follow the general
strategy of generalized policy iteration (GPI), meaning that they maintain an approximate
value function and an approximate policy, and they continually try to improve each on the
basis of the other. These three ideas are central to the subjects covered in this book. We
suggest that value functions, backing up value updates, and GPI are powerful organizing
principles potentially relevant to any model of intelligence, whether artificial or natural.

Two of the most important dimensions along which the methods vary are shown in
Figure 8.11. These dimensions have to do with the kind of update used to improve the
value function. The horizontal dimension is whether they are sample updates (based on a
sample trajectory) or expected updates (based on a distribution of possible trajectories).
Expected updates require a distribution model, whereas sample updates need only a
sample model, or can be done from actual experience with no model at all (another
dimension of variation). The vertical dimension of Figure 8.11 corresponds to the depth
of updates, that is, to the degree of bootstrapping. At three of the four corners of the
space are the three primary methods for estimating values: dynamic programming, TD,
and Monte Carlo. Along the left edge of the space are the sample-update methods,
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Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the
two of the most important dimensions explored in Part I of this book: the depth and width of
the updates.

ranging from one-step TD updates to full-return Monte Carlo updates. Between these
is a spectrum including methods based on n-step updates (and in Chapter 12 we will
extend this to mixtures of n-step updates such as the A-updates implemented by eligibility
traces).

Dynamic programming methods are shown in the extreme upper-right corner of the
space because they involve one-step expected updates. The lower-right corner is the
extreme case of expected updates so deep that they run all the way to terminal states
(or, in a continuing task, until discounting has reduced the contribution of any further
rewards to a negligible level). This is the case of exhaustive search. Intermediate methods
along this dimension include heuristic search and related methods that search and update
up to a limited depth, perhaps selectively. There are also methods that are intermediate
along the horizontal dimension. These include methods that mix expected and sample
updates, as well as the possibility of methods that mix samples and distributions within
a single update. The interior of the square is filled in to represent the space of all such
intermediate methods.

A third dimension that we have emphasized in this book is the binary distinction
between on-policy and off-policy methods. In the former case, the agent learns the value
function for the policy it is currently following, whereas in the latter case it learns the
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value function for the policy for a different policy, often the one that the agent currently
thinks is best. The policy generating behavior is typically different from what is currently
thought best because of the need to explore. This third dimension might be visualized as
perpendicular to the plane of the page in Figure 8.11.

In addition to the three dimensions just discussed, we have identified a number of
others throughout the book:

Definition of return Is the task episodic or continuing, discounted or undiscounted?

Action values vs. state values vs. afterstate values What kind of values should
be estimated? If only state values are estimated, then either a model or a separate
policy (as in actor—critic methods) is required for action selection.

Action selection/exploration How are actions selected to ensure a suitable trade-off
between exploration and exploitation? We have considered only the simplest ways to
do this: e-greedy, optimistic initialization of values, soft-max, and upper confidence
bound.

Synchronous vs. asynchronous Are the updates for all states performed simultane-
ously or one by one in some order?

Real vs. simulated Should one update based on real experience or simulated experi-
ence? If both, how much of each?

Location of updates What states or state—action pairs should be updated? Model-
free methods can choose only among the states and state—action pairs actually
encountered, but model-based methods can choose arbitrarily. There are many
possibilities here.

Timing of updates Should updates be done as part of selecting actions, or only after-
ward?

Memory for updates How long should updated values be retained? Should they be
retained permanently, or only while computing an action selection, as in heuristic
search?

Of course, these dimensions are neither exhaustive nor mutually exclusive. Individual
algorithms differ in many other ways as well, and many algorithms lie in several places
along several dimensions. For example, Dyna methods use both real and simulated
experience to affect the same value function. It is also perfectly sensible to maintain
multiple value functions computed in different ways or over different state and action
representations. These dimensions do, however, constitute a coherent set of ideas for
describing and exploring a wide space of possible methods.

The most important dimension not mentioned here, and not covered in Part I of
this book, is that of function approximation. Function approximation can be viewed as
an orthogonal spectrum of possibilities ranging from tabular methods at one extreme
through state aggregation, a variety of linear methods, and then a diverse set of nonlinear
methods. This dimension is explored in Part II.
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Chapter 8: Planning and Learning with Tabular Methods

Bibliographical and Historical Remarks

8.1

8.2

8.3

8.4

8.5

8.6-7

The overall view of planning and learning presented here has developed gradually
over a number of years, in part by the authors (Sutton, 1990, 1991a, 1991b;
Barto, Bradtke, and Singh, 1991, 1995; Sutton and Pinette, 1985; Sutton and
Barto, 1981b); it has been strongly influenced by Agre and Chapman (1990; Agre
1988), Bertsekas and Tsitsiklis (1989), Singh (1993), and others. The authors
were also strongly influenced by psychological studies of latent learning (Tolman,
1932) and by psychological views of the nature of thought (e.g., Galanter and
Gerstenhaber, 1956; Craik, 1943; Campbell, 1960; Dennett, 1978). In Part
IIT of the book, Section 14.6 relates model-based and model-free methods to
psychological theories of learning and behavior, and Section 15.11 discusses ideas
about how the brain might implement these types of methods.

The terms direct and indirect, which we use to describe different kinds of
reinforcement learning, are from the adaptive control literature (e.g., Goodwin
and Sin, 1984), where they are used to make the same kind of distinction. The
term system identification is used in adaptive control for what we call model-
learning (e.g., Goodwin and Sin, 1984; Ljung and Soderstrom, 1983; Young,
1984). The Dyna architecture is due to Sutton (1990), and the results in this
and the next section are based on results reported there. Barto and Singh
(1990) consider some of the issues in comparing direct and indirect reinforcement
learning methods. Early work extending Dyna to linear function approximation
(Chapter 9) was done by Sutton, Szepesvéri, Geramifard, and Bowling (2008)
and by Parr, Li, Taylor, Painter-Wakefield, and Littman (2008).

There have been several works with model-based reinforcement learning that take
the idea of exploration bonuses and optimistic initialization to its logical extreme,
in which all incompletely explored choices are assumed maximally rewarding
and optimal paths are computed to test them. The E? algorithm of Kearns and
Singh (2002) and the R-max algorithm of Brafman and Tennenholtz (2003) are
guaranteed to find a near-optimal solution in time polynomial in the number
of states and actions. This is usually too slow for practical algorithms but is
probably the best that can be done in the worst case.

Prioritized sweeping was developed simultaneously and independently by Moore
and Atkeson (1993) and Peng and Williams (1993). The results in the box on
page 170 are due to Peng and Williams (1993). The results in the box on page 171
are due to Moore and Atkeson. Key subsequent work in this area includes that
by McMahan and Gordon (2005) and by van Seijen and Sutton (2013).

This section was strongly influenced by the experiments of Singh (1993).

Trajectory sampling has implicitly been a part of reinforcement learning from
the outset, but it was most explicitly emphasized by Barto, Bradtke, and Singh
(1995) in their introduction of RTDP. They recognized that Korf’s (1990) learning
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8.9

8.10

8.11

real-time A* (LRTA*) algorithm is an asynchronous DP algorithm that applies
to stochastic problems as well as the deterministic problems on which Korf
focused. Beyond LRTA*, RTDP includes the option of updating the values of
many states in the time intervals between the execution of actions. Barto et
al. (1995) proved the convergence result described here by combining Korf’s (1990)
convergence proof for LRTA* with the result of Bertsekas (1982) (also Bertsekas
and Tsitsiklis, 1989) ensuring convergence of asynchronous DP for stochastic
shortest path problems in the undiscounted case. Combining model-learning
with RTDP is called Adaptive RTDP, also presented by Barto et al. (1995) and
discussed by Barto (2011).

For further reading on heuristic search, the reader is encouraged to consult texts
and surveys such as those by Russell and Norvig (2009) and Korf (1988). Peng
and Williams (1993) explored a forward focusing of updates much as is suggested
in this section.

Abramson’s (1990) expected-outcome model is a rollout algorithm applied to two-
person games in which the play of both simulated players is random. He argued
that even with random play, it is a “powerful heuristic” that is “precise, accurate,
easily estimable, efficiently calculable, and domain-independent.” Tesauro and
Galperin (1997) demonstrated the effectiveness of rollout algorithms for improving
the play of backgammon programs, adopting the term “rollout” from its use
in evaluating backgammon positions by playing out positions with different
randomly generating sequences of dice rolls. Bertsekas, Tsitsiklis, and Wu (1997)
examine rollout algorithms applied to combinatorial optimization problems, and
Bertsekas (2013) surveys their use in discrete deterministic optimization problems,
remarking that they are “often surprisingly effective.”

The central ideas of MCTS were introduced by Coulom (2006) and by Kocsis
and Szepesvari (2006). They built upon previous research with Monte Carlo
planning algorithms as reviewed by these authors. Browne, Powley, Whitehouse,
Lucas, Cowling, Rohlfshagen, Tavener, Perez, Samothrakis, and Colton (2012)
is an excellent survey of MCTS methods and their applications. David Silver
contributed to the ideas and presentation in this section.






Part II:
Approximate Solution Methods

In the second part of the book we extend the tabular methods presented in the first part
to apply to problems with arbitrarily large state spaces. In many of the tasks to which we
would like to apply reinforcement learning the state space is combinatorial and enormous;
the number of possible camera images, for example, is much larger than the number of
atoms in the universe. In such cases we cannot expect to find an optimal policy or the
optimal value function even in the limit of infinite time and data; our goal instead is to
find a good approximate solution using limited computational resources. In this part of
the book we explore such approximate solution methods.

The problem with large state spaces is not just the memory needed for large tables,
but the time and data needed to fill them accurately. In many of our target tasks, almost
every state encountered will never have been seen before. To make sensible decisions in
such states it is necessary to generalize from previous encounters with different states
that are in some sense similar to the current one. In other words, the key issue is that of
generalization. How can experience with a limited subset of the state space be usefully
generalized to produce a good approximation over a much larger subset?

Fortunately, generalization from examples has already been extensively studied, and
we do not need to invent totally new methods for use in reinforcement learning. To some
extent we need only combine reinforcement learning methods with existing generalization
methods. The kind of generalization we require is often called function approximation
because it takes examples from a desired function (e.g., a value function) and attempts
to generalize from them to construct an approximation of the entire function. Function
approximation is an instance of supervised learning, the primary topic studied in machine
learning, artificial neural networks, pattern recognition, and statistical curve fitting. In
theory, any of the methods studied in these fields can be used in the role of function
approximator within reinforcement learning algorithms, although in practice some fit
more easily into this role than others.

Reinforcement learning with function approximation involves a number of new issues
that do not normally arise in conventional supervised learning, such as nonstationarity,
bootstrapping, and delayed targets. We introduce these and other issues successively over
the five chapters of this part. Initially we restrict attention to on-policy training, treating
in Chapter 9 the prediction case, in which the policy is given and only its value function
is approximated, and then in Chapter 10 the control case, in which an approximation to
the optimal policy is found. The challenging problem of off-policy learning with function
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approximation is treated in Chapter 11. In each of these three chapters we will have
to return to first principles and re-examine the objectives of the learning to take into
account function approximation. Chapter 12 introduces and analyzes the algorithmic
mechanism of eligibility traces, which dramatically improves the computational properties
of multi-step reinforcement learning methods in many cases. The final chapter of this
part explores a different approach to control, policy-gradient methods, which approximate
the optimal policy directly and need never form an approximate value function (although
they may be much more efficient if they do approximate a value function as well the

policy).



Chapter 9

On-policy Prediction with
Approximation

In this chapter, we begin our study of function approximation in reinforcement learning
by considering its use in estimating the state-value function from on-policy data, that is,
in approximating v, from experience generated using a known policy 7. The novelty in
this chapter is that the approximate value function is represented not as a table but as a
parameterized functional form with weight vector w € R%. We will write 9(s,w) ~ v, (s)
for the approximate value of state s given weight vector w. For example, © might be
a linear function in features of the state, with w the vector of feature weights. More
generally, o might be the function computed by a multi-layer artificial neural network,
with w the vector of connection weights in all the layers. By adjusting the weights, any
of a wide range of different functions can be implemented by the network. Or ¢ might be
the function computed by a decision tree, where w is all the numbers defining the split
points and leaf values of the tree. Typically, the number of weights (the dimensionality of
w) is much less than the number of states (d < |§|), and changing one weight changes the
estimated value of many states. Consequently, when a single state is updated, the change
generalizes from that state to affect the values of many other states. Such generalization
makes the learning potentially more powerful but also potentially more difficult to manage
and understand.

Perhaps surprisingly, extending reinforcement learning to function approximation also
makes it applicable to partially observable problems, in which the full state is not available
to the agent. If the parameterized function form for v does not allow the estimated
value to depend on certain aspects of the state, then it is just as if those aspects are
unobservable. In fact, all the theoretical results for methods using function approximation
presented in this part of the book apply equally well to cases of partial observability.
What function approximation can’t do, however, is augment the state representation
with memories of past observations. Some such possible further extensions are discussed
briefly in Section 17.3.
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9.1 Value-function Approximation

All of the prediction methods covered in this book have been described as updates to an
estimated value function that shift its value at particular states toward a “backed-up value,”
or update target, for that state. Let us refer to an individual update by the notation s — u,
where s is the state updated and u is the update target that s’s estimated value is shifted
toward. For example, the Monte Carlo update for value prediction is Sy — Gy, the TD(0)
update is Sy — Rip1 +70(S¢+1,wy), and the n-step TD update is Sy — Gy.p4p. In the DP
(dynamic programming) policy-evaluation update, s — E [Riy1 + Y0(St41,We) | St =s],
an arbitrary state s is updated, whereas in the other cases the state encountered in actual
experience, Sy, is updated.

It is natural to interpret each update as specifying an example of the desired input—
output behavior of the value function. In a sense, the update s — u means that the
estimated value for state s should be more like the update target u. Up to now, the
actual update has been trivial: the table entry for s’s estimated value has simply been
shifted a fraction of the way toward w, and the estimated values of all other states
were left unchanged. Now we permit arbitrarily complex and sophisticated methods to
implement the update, and updating at s generalizes so that the estimated values of
many other states are changed as well. Machine learning methods that learn to mimic
input—output examples in this way are called supervised learning methods, and when the
outputs are numbers, like u, the process is often called function approximation. Function
approximation methods expect to receive examples of the desired input—output behavior
of the function they are trying to approximate. We use these methods for value prediction
simply by passing to them the s — g of each update as a training example. We then
interpret the approximate function they produce as an estimated value function.

Viewing each update as a conventional training example in this way enables us to use
any of a wide range of existing function approximation methods for value prediction. In
principle, we can use any method for supervised learning from examples, including artificial
neural networks, decision trees, and various kinds of multivariate regression. However,
not all function approximation methods are equally well suited for use in reinforcement
learning. The most sophisticated artificial neural network and statistical methods all
assume a static training set over which multiple passes are made. In reinforcement
learning, however, it is important that learning be able to occur online, while the agent
interacts with its environment or with a model of its environment. To do this requires
methods that are able to learn efficiently from incrementally acquired data. In addition,
reinforcement learning generally requires function approximation methods able to handle
nonstationary target functions (target functions that change over time). For example,
in control methods based on GPI (generalized policy iteration) we often seek to learn
¢» while m changes. Even if the policy remains the same, the target values of training
examples are nonstationary if they are generated by bootstrapping methods (DP and TD
learning). Methods that cannot easily handle such nonstationarity are less suitable for
reinforcement learning.
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9.2 The Prediction Objective (VE)

Up to now we have not specified an explicit objective for prediction. In the tabular case
a continuous measure of prediction quality was not necessary because the learned value
function could come to equal the true value function exactly. Moreover, the learned
values at each state were decoupled—an update at one state affected no other. But with
genuine approximation, an update at one state affects many others, and it is not possible
to get the values of all states exactly correct. By assumption we have far more states
than weights, so making one state’s estimate more accurate invariably means making
others’ less accurate. We are obligated then to say which states we care most about. We
must specify a state distribution p(s) >0, >, pu(s) = 1, representing how much we care
about the error in each state s. By the error in a state s we mean the square of the
difference between the approximate value 9(s,w) and the true value v, (s). Weighting
this over the state space by p, we obtain a natural objective function, the Mean Squared
Value Error, denoted VE:

VE(w) =Y us) [vﬂ(s) - ﬁ(s,w)] ’ (9.1)

sES

The square root of this measure, the root VE, gives a rough measure of how much the
approximate values differ from the true values and is often used in plots. Often u(s) is
chosen to be the fraction of time spent in s. Under on-policy training this is called the
on-policy distribution; we focus entirely on this case in this chapter. In continuing tasks,
the on-policy distribution is the stationary distribution under 7.

The on-policy distribution in episodic tasks

In an episodic task, the on-policy distribution is a little different in that it depends
on how the initial states of episodes are chosen. Let h(s) denote the probability
that an episode begins in each state s, and let 7(s) denote the number of time
steps spent, on average, in state s in a single episode. Time is spent in a state s
if episodes start in s, or if transitions are made into s from a preceding state s in
which time is spent:

n(s) = h(s) + Zn(g) Zw(a|§)p(s|§, a), forall s€S8. (9.2)

This system of equations can be solved for the expected number of visits n(s). The
on-policy distribution is then the fraction of time spent in each state normalized to
sum to one:

n(s)
p(s) = ,
ZS’ 77(5/)
This is the natural choice without discounting. If there is discounting (y < 1) it

should be treated as a form of termination, which can be done simply by including
a factor of +y in the second term of (9.2).

for all s € 8. (9.3)
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The two cases, continuing and episodic, behave similarly, but with approximation they
must be treated separately in formal analyses, as we will see repeatedly in this part of
the book. This completes the specification of the learning objective.

But it is not completely clear that the VE is the right performance objective for
reinforcement learning. Remember that our ultimate purpose—the reason we are learning
a value function—is to find a better policy. The best value function for this purpose is
not necessarily the best for minimizing VE. Nevertheless, it is not yet clear what a more
useful alternative goal for value prediction might be. For now, we will focus on VE.

An ideal goal in terms of VE would be to find a global optimum, a weight vector w*
for which VE(w*) < VE(w) for all possible w. Reaching this goal is sometimes possible
for simple function approximators such as linear ones, but is rarely possible for complex
function approximators such as artificial neural networks and decision trees. Short of
this, complex function approximators may seek to converge instead to a local optimum,
a weight vector w* for which VE(w*) < VE(w) for all w in some neighborhood of w*.
Although this guarantee is only slightly reassuring, it is typically the best that can be
said for nonlinear function approximators, and often it is enough. Still, for many cases of
interest in reinforcement learning there is no guarantee of convergence to an optimum, or
even to within a bounded distance of an optimum. Some methods may in fact diverge,
with their VE approaching infinity in the limit.

In the last two sections we outlined a framework for combining a wide range of
reinforcement learning methods for value prediction with a wide range of function
approximation methods, using the updates of the former to generate training examples
for the latter. We also described a VE performance measure which these methods may
aspire to minimize. The range of possible function approximation methods is far too
large to cover all, and anyway too little is known about most of them to make a reliable
evaluation or recommendation. Of necessity, we consider only a few possibilities. In
the rest of this chapter we focus on function approximation methods based on gradient
principles, and on linear gradient-descent methods in particular. We focus on these
methods in part because we consider them to be particularly promising and because they
reveal key theoretical issues, but also because they are simple and our space is limited.

9.3 Stochastic-gradient and Semi-gradient Methods

We now develop in detail one class of learning methods for function approximation in
value prediction, those based on stochastic gradient descent (SGD). SGD methods are
among the most widely used of all function approximation methods and are particularly
well suited to online reinforcement learning.

In gradient-descent methods, the weight vector is a column vector with a fixed number
of real valued components, w = (w1, ws, ...,wq) ' ,* and the approximate value function
0(s,w) is a differentiable function of w for all s € 8. We will be updating w at each of
a series of discrete time steps, t = 0,1,2,3,..., so we will need a notation w; for the

IThe T denotes transpose, needed here to turn the horizontal row vector in the text into a vertical
column vector; in this book vectors are generally taken to be column vectors unless explicitly written out
horizontally or transposed.
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weight vector at each step. For now, let us assume that, on each step, we observe a new
example Sy — v, (S;) consisting of a (possibly randomly selected) state Sy and its true
value under the policy. These states might be successive states from an interaction with
the environment, but for now we do not assume so. Even though we are given the exact,
correct values, v, (S;) for each Sy, there is still a difficult problem because our function
approximator has limited resources and thus limited resolution. In particular, there is
generally no w that gets all the states, or even all the examples, exactly correct. In
addition, we must generalize to all the other states that have not appeared in examples.

We assume that states appear in examples with the same distribution, u, over which
we are trying to minimize the VE as given by (9.1). A good strategy in this case is
to try to minimize error on the observed examples. Stochastic gradient-descent (SGD)
methods do this by adjusting the weight vector after each example by a small amount in
the direction that would most reduce the error on that example:

Wil = Wy — %av [vﬂ(St) - @(St,wt)r (9.4)
—w;+a [v,r(sg - @(st,wt)} Vo(S;,wr), (9.5)

where « is a positive step-size parameter, and V f(w), for any scalar expression f(w)
that is a function of a vector (here w), denotes the column vector of partial derivatives
of the expression with respect to the components of the vector:

o (w) 0f(w) 8f(W))T_

awl ’ a’wg T 6wd

Vi) = ( (0.
This derivative vector is the gradient of f with respect to w. SGD methods are “gradient
descent” methods because the overall step in w; is proportional to the negative gradient
of the example’s squared error (9.4). This is the direction in which the error falls most
rapidly. Gradient descent methods are called “stochastic” when the update is done, as
here, on only a single example, which might have been selected stochastically. Over many
examples, making small steps, the overall effect is to minimize an average performance
measure such as the VE.

It may not be immediately apparent why SGD takes only a small step in the direction
of the gradient. Could we not move all the way in this direction and completely eliminate
the error on the example? In many cases this could be done, but usually it is not desirable.
Remember that we do not seek or expect to find a value function that has zero error for
all states, but only an approximation that balances the errors in different states. If we
completely corrected each example in one step, then we would not find such a balance.
In fact, the convergence results for SGD methods assume that o decreases over time. If
it decreases in such a way as to satisfy the standard stochastic approximation conditions
(2.7), then the SGD method (9.5) is guaranteed to converge to a local optimum.

We turn now to the case in which the target output, here denoted U; € R, of the tth
training example, S; — Uy, is not the true value, v, (S;), but some, possibly random,
approximation to it. For example, U; might be a noise-corrupted version of v, (S;), or it
might be one of the bootstrapping targets using 0 mentioned in the previous section. In
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these cases we cannot perform the exact update (9.5) because v, (S;) is unknown, but
we can approximate it by substituting U; in place of v,(S;). This yields the following
general SGD method for state-value prediction:

Wiyl = Wi + [Ut - @(Stawt):| Vo (S, we). (9.7)

If U; is an unbiased estimate, that is, if E[U|S;=s] = v,(S:), for each ¢, then wy is
guaranteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing a.

For example, suppose the states in the examples are the states generated by interaction
(or simulated interaction) with the environment using policy 7. Because the true value of
a state is the expected value of the return following it, the Monte Carlo target U; = G is
by definition an unbiased estimate of v, (S;). With this choice, the general SGD method
(9.7) converges to a locally optimal approximation to v, (S;). Thus, the gradient-descent
version of Monte Carlo state-value prediction is guaranteed to find a locally optimal
solution. Pseudocode for a complete algorithm is shown in the box below.

Gradient Monte Carlo Algorithm for Estimating 0 ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function o : § x R — R

Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode Sy, Ao, R1,S51, A1, ..., Rp, St using 7
Loop for each step of episode, t =0,1,...,7 — 1:
W W+ a[Gy — 9(S;,w)| V(S w)

One does not obtain the same guarantees if a bootstrapping estimate of v, (S;) is used
as the target Uy in (9.7). Bootstrapping targets such as n-step returns Gy.typ, or the DP
target >, ., m(alSt)p(s’, 7| St a)[r +v0(s",wy)] all depend on the current value of the
weight vector w;, which implies that they will be biased and that they will not produce a
true gradient-descent method. One way to look at this is that the key step from (9.4)
to (9.5) relies on the target being independent of w;. This step would not be valid if
a bootstrapping estimate were used in place of v, (S;). Bootstrapping methods are not
in fact instances of true gradient descent (Barnard, 1993). They take into account the
effect of changing the weight vector w, on the estimate, but ignore its effect on the target.
They include only a part of the gradient and, accordingly, we call them semi-gradient
methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear case
discussed in the next section. Moreover, they offer important advantages that make them
often clearly preferred. One reason for this is that they typically enable significantly faster
learning, as we have seen in Chapters 6 and 7. Another is that they enable learning to



9.8. Stochastic-gradient and Semi-gradient Methods 203

be continual and online, without waiting for the end of an episode. This enables them to
be used on continuing problems and provides computational advantages. A prototypical
semi-gradient method is semi-gradient TD(0), which uses Uy = R¢11 + y0(St+1,W) as its
target. Complete pseudocode for this method is given in the box below.

Semi-gradient TD(0) for estimating ¥ = v,

Input: the policy 7 to be evaluated

Input: a differentiable function o : §$ x R? — R such that 9(terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ 7(:|S)
Take action A, observe R, S’
W W+ a[R+ (5", w) — 0(S,w)| Vo (S,w)
S« 5

until S is terminal

\. .

State aggregation is a simple form of generalizing function approximation in which
states are grouped together, with one estimated value (one component of the weight
vector w) for each group. The value of a state is estimated as its group’s component,
and when the state is updated, that component alone is updated. State aggregation
is a special case of SGD (9.7) in which the gradient, Vi(S;,wy), is 1 for S;’s group’s
component and 0 for the other components.

Example 9.1: State Aggregation on the 1000-state Random Walk Consider a
1000-state version of the random walk task (Examples 6.2 and 7.1 on pages 125 and
144). The states are numbered from 1 to 1000, left to right, and all episodes begin near
the center, in state 500. State transitions are from the current state to one of the 100
neighboring states to its left, or to one of the 100 neighboring states to its right, all with
equal probability. Of course, if the current state is near an edge, then there may be fewer
than 100 neighbors on that side of it. In this case, all the probability that would have
gone into those missing neighbors goes into the probability of terminating on that side
(thus, state 1 has a 0.5 chance of terminating on the left, and state 950 has a 0.25 chance
of terminating on the right). As usual, termination on the left produces a reward of
—1, and termination on the right produces a reward of +1. All other transitions have a
reward of zero. We use this task as a running example throughout this section.

Figure 9.1 shows the true value function v, for this task. It is nearly a straight line,
but curving slightly toward the horizontal for the last 100 states at each end. Also shown
is the final approximate value function learned by the gradient Monte-Carlo algorithm
with state aggregation after 100,000 episodes with a step size of @ =2 x 10~°. For the
state aggregation, the 1000 states were partitioned into 10 groups of 100 states each (i.e.,
states 1-100 were one group, states 101-200 were another, and so on). The staircase effect
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Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task,
using the gradient Monte Carlo algorithm (page 202).

shown in the figure is typical of state aggregation; within each group, the approximate
value is constant, and it changes abruptly from one group to the next. These approximate
values are close to the global minimum of the VE (9.1).

Some of the details of the approximate values are best appreciated by reference to
the state distribution p for this task, shown in the lower portion of the figure with a
right-side scale. State 500, in the center, is the first state of every episode, but is rarely
visited again. On average, about 1.37% of the time steps are spent in the start state.
The states reachable in one step from the start state are the second most visited, with
about 0.17% of the time steps being spent in each of them. From there u falls off almost
linearly, reaching about 0.0147% at the extreme states 1 and 1000. The most visible
effect of the distribution is on the leftmost groups, whose values are clearly shifted higher
than the unweighted average of the true values of states within the group, and on the
rightmost groups, whose values are clearly shifted lower. This is due to the states in
these areas having the greatest asymmetry in their weightings by p. For example, in the
leftmost group, state 100 is weighted more than 3 times more strongly than state 1. Thus
the estimate for the group is biased toward the true value of state 100, which is higher
than the true value of state 1. ]

9.4 Linear Methods

One of the most important special cases of function approximation is that in which the
approximate function, o(-,w), is a linear function of the weight vector, w. Corresponding
to every state s, there is a real-valued vector x(s) = (z1(s),z2(s),...,74(s)) ", with the
same number of components as w. Linear methods approximate state-value function by
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the inner product between w and x(s):

d
O(s,w) =w'x(s) = Zw,xl(s) (9.8)

In this case the approximate value function is said to be linear in the weights, or simply
linear.

The vector x(s) is called a feature vector representing state s. Each component z;(s)
of x(s) is the value of a function z; : § — R. We think of a feature as the entirety of one
of these functions, and we call its value for a state s a feature of s. For linear methods,
features are basis functions because they form a linear basis for the set of approximate
functions. Constructing d-dimensional feature vectors to represent states is the same as
selecting a set of d basis functions. Features may be defined in many different ways; we
cover a few possibilities in the next sections.

It is natural to use SGD updates with linear function approximation. The gradient of
the approximate value function with respect to w in this case is

Vi(s,w) = x(s).

Thus, in the linear case the general SGD update (9.7) reduces to a particularly simple
form:

Wt+1 = Wi + (0% |:Ut — f)(St,Wt)] X(St)

Because it is so simple, the linear SGD case is one of the most favorable for mathematical
analysis. Almost all useful convergence results for learning systems of all kinds are for
linear (or simpler) function approximation methods.

In particular, in the linear case there is only one optimum (or, in degenerate cases,
one set of equally good optima), and thus any method that is guaranteed to converge to
or near a local optimum is automatically guaranteed to converge to or near the global
optimum. For example, the gradient Monte Carlo algorithm presented in the previous
section converges to the global optimum of the VE under linear function approximation
if a is reduced over time according to the usual conditions.

The semi-gradient TD(0) algorithm presented in the previous section also converges
under linear function approximation, but this does not follow from general results on
SGD; a separate theorem is necessary. The weight vector converged to is also not the
global optimum, but rather a point near the local optimum. It is useful to consider this
important case in more detail, specifically for the continuing case. The update at each
time ¢ is

Wi = Wy + a(RtH + 'YW;FXtJrl — thxt)xt (9.9)
T
=Ww;+ a(Rt+1Xt — Xy (Xt - ’YXt+1) Wt),

where here we have used the notational shorthand x, = x(S;). Once the system has
reached steady state, for any given w;, the expected next weight vector can be written

]E[Wt+1|Wt] = W¢ + O[(b — AWt)7 (910)
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where
b=E[Rx] €R? and A= E{xt (x; — 'yxtH)T} e R¢ x R (9.11)

From (9.10) it is clear that, if the system converges, it must converge to the weight vector
wrp at which

b— AWTD =0
= b=Awrp
= wrp = A 'b. (9.12)

This quantity is called the TD fized point. In fact linear semi-gradient TD(0) converges
to this point. Some of the theory proving its convergence, and the existence of the inverse
above, is given in the box.

Proof of Convergence of Linear TD(0)

What properties assure convergence of the linear TD(0) algorithm (9.9)? Some
insight can be gained by rewriting (9.10) as

]E[wt+1\wt] = (I — aA)Wt + ab. (913)

Note that the matrix A multiplies the weight vector w; and not b; only A is
important to convergence. To develop intuition, consider the special case in which
A is a diagonal matrix. If any of the diagonal elements are negative, then the
corresponding diagonal element of I — A will be greater than one, and the
corresponding component of w; will be amplified, which will lead to divergence if
continued. On the other hand, if the diagonal elements of A are all positive, then
« can be chosen smaller than one over the largest of them, such that I — A is
diagonal with all diagonal elements between 0 and 1. In this case the first term
of the update tends to shrink wy, and stability is assured. In general, w; will be
reduced toward zero whenever A is positive definite, meaning y' Ay > 0 for any
real vector y # 0. Positive definiteness also ensures that the inverse A~! exists.

For linear TD(0), in the continuing case with v < 1, the A matrix (9.11) can be
written

A=Y u(s)Y wlals) > plr,s'|s, a)x(s) (x(s) — vx(s') |

a r,s’

= 5" 1(s) D p(s'[8)x(s) (x(s) — yx(s")) |

]
= 3 utspx) (xts) 2 S p(s 1905
= X"D(I - vP)X,

where p(s) is the stationary distribution under 7, p(s’|s) is the probability of
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